Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations

Identifieur interne : 000194 ( PascalFrancis/Corpus ); précédent : 000193; suivant : 000195

Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations

Auteurs : MIJEONG PARK ; William J. Randel ; Douglas E. Kinnison ; Rolando R. Garcia ; WOOKAP CHOI

Source :

RBID : Pascal:04-0207035

Descripteurs français

English descriptors

Abstract

Received 21 April 2003; revised 19 [i] Seasonal variations of several trace constituents near the tropopause are analyzed based on satellite measurements, and results are compared to a recent numerical model simulation. We examine methane, water vapor, and nitrogen oxides (NOx) derived from Halogen Occultation Experiment (HALOE) satellite observations; these species have strong gradients near the tropopause, so that their seasonality is indicative of stratosphere-troposphere exchange (STE) and circulation in the near-tropopause region. Model results are from the Model for Ozone and Related Chemical Tracers (MOZART) stratosphere-troposphere chemical transport model (CTM). Results show overall good agreement between observations and model simulations for methane and water vapor, whereas nitrogen oxides near the tropopause are much lower in the model than suggested by HALOE data. The latter difference is probably related to the lightning and convective parameterizations incorporated in MOZART, which produce NOx maxima not near the tropopause, but in the upper troposphere. Constituent seasonal variations highlight the imporatance of the Northern Hemisphere (NH) summer monsoons as regions for transport into the lowermost stratosphere. In MOZART, there is clear evidence that air from the monsoon region is transported into the tropics and entrained into the upward Brewer-Dobson circulation, bypassing the tropical tropopause.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 109
A06       @2 D3
A08 01  1  ENG  @1 Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations
A11 01  1    @1 MIJEONG PARK
A11 02  1    @1 RANDEL (William J.)
A11 03  1    @1 KINNISON (Douglas E.)
A11 04  1    @1 GARCIA (Rolando R.)
A11 05  1    @1 WOOKAP CHOI
A14 01      @1 School of Earth and Environmental Sciences, Seoul National University @2 Seoul @3 KOR @Z 1 aut.
A14 02      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 03      @1 Wookap School of Earth and Environmental Sciences, Seoul National University @2 Seoul @3 KOR @Z 5 aut.
A20       @2 D03301.1-D03302.16
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000119345860220
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 1 P.1/4
A47 01  1    @0 04-0207035
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 Received 21 April 2003; revised 19 [i] Seasonal variations of several trace constituents near the tropopause are analyzed based on satellite measurements, and results are compared to a recent numerical model simulation. We examine methane, water vapor, and nitrogen oxides (NOx) derived from Halogen Occultation Experiment (HALOE) satellite observations; these species have strong gradients near the tropopause, so that their seasonality is indicative of stratosphere-troposphere exchange (STE) and circulation in the near-tropopause region. Model results are from the Model for Ozone and Related Chemical Tracers (MOZART) stratosphere-troposphere chemical transport model (CTM). Results show overall good agreement between observations and model simulations for methane and water vapor, whereas nitrogen oxides near the tropopause are much lower in the model than suggested by HALOE data. The latter difference is probably related to the lightning and convective parameterizations incorporated in MOZART, which produce NOx maxima not near the tropopause, but in the upper troposphere. Constituent seasonal variations highlight the imporatance of the Northern Hemisphere (NH) summer monsoons as regions for transport into the lowermost stratosphere. In MOZART, there is clear evidence that air from the monsoon region is transported into the tropics and entrained into the upward Brewer-Dobson circulation, bypassing the tropical tropopause.
C02 01  2    @0 220
C02 02  3    @0 001E
C03 01  2  FRE  @0 Variation saisonnière @5 26
C03 01  2  ENG  @0 seasonal variations @5 26
C03 01  2  SPA  @0 Variación estacional @5 26
C03 02  2  FRE  @0 Méthane @5 27
C03 02  2  ENG  @0 methane @5 27
C03 02  2  SPA  @0 Metano @5 27
C03 03  2  FRE  @0 Vapeur eau @5 28
C03 03  2  ENG  @0 water vapor @5 28
C03 03  2  SPA  @0 Vapor agua @5 28
C03 04  X  FRE  @0 Azote oxyde @5 29
C03 04  X  ENG  @0 Nitrogen oxide @5 29
C03 04  X  SPA  @0 Nitrógeno óxido @5 29
C03 05  X  FRE  @0 Satellite NEAR @5 30
C03 05  X  ENG  @0 NEAR satellite @5 30
C03 05  X  SPA  @0 Satélite NEAR @5 30
C03 06  X  FRE  @0 Tropopause @5 31
C03 06  X  ENG  @0 Tropopause @5 31
C03 06  X  SPA  @0 Tropopausa @5 31
C03 07  X  FRE  @0 Observation par satellite @5 32
C03 07  X  ENG  @0 Satellite observation @5 32
C03 07  X  SPA  @0 Observación por satélite @5 32
C03 08  X  FRE  @0 Modèle chimique @5 33
C03 08  X  ENG  @0 Chemical model @5 33
C03 08  X  SPA  @0 Modelo químico @5 33
C03 09  2  FRE  @0 Simulation numérique @5 34
C03 09  2  ENG  @0 digital simulation @5 34
C03 09  2  SPA  @0 Simulación numérica @5 34
C03 10  X  FRE  @0 Occultation @5 35
C03 10  X  ENG  @0 Occultation @5 35
C03 10  X  SPA  @0 Ocultación @5 35
C03 11  X  FRE  @0 Satellite UARS @5 36
C03 11  X  ENG  @0 UARS satellite @5 36
C03 11  X  SPA  @0 Satélite UARS @5 36
C03 12  X  FRE  @0 Interaction stratosphère troposphère @5 37
C03 12  X  ENG  @0 Stratosphere troposphere coupling @5 37
C03 12  X  SPA  @0 Interacción estratósfera tropósfera @5 37
C03 13  2  FRE  @0 Ozone @5 38
C03 13  2  ENG  @0 ozone @5 38
C03 13  2  SPA  @0 Ozono @5 38
C03 14  2  FRE  @0 Traceur @5 39
C03 14  2  ENG  @0 tracers @5 39
C03 14  2  SPA  @0 Trazador @5 39
C03 15  2  FRE  @0 Stratosphère @5 40
C03 15  2  ENG  @0 stratosphere @5 40
C03 15  2  SPA  @0 Estratosfera @5 40
C03 16  2  FRE  @0 Troposphère @5 41
C03 16  2  ENG  @0 troposphere @5 41
C03 17  2  FRE  @0 Foudre @5 42
C03 17  2  ENG  @0 lightning @5 42
C03 17  2  SPA  @0 Rayo @5 42
C03 18  X  FRE  @0 Paramétrisation @5 43
C03 18  X  ENG  @0 Parameterization @5 43
C03 18  X  SPA  @0 Parametrización @5 43
C03 19  X  FRE  @0 Mousson été @5 44
C03 19  X  ENG  @0 Summer monsoon @5 44
C03 19  X  SPA  @0 Monzón verano @5 44
C03 20  X  FRE  @0 Atmosphère claire @5 45
C03 20  X  ENG  @0 Clear air @5 45
C03 20  X  SPA  @0 Atmósfera clara @5 45
C03 21  2  FRE  @0 Hémisphère Nord @5 46
C03 21  2  ENG  @0 Northern Hemisphere @5 46
C03 21  2  SPA  @0 Hemisferio norte @5 46
N21       @1 138
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 04-0207035 INIST
ET : Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations
AU : MIJEONG PARK; RANDEL (William J.); KINNISON (Douglas E.); GARCIA (Rolando R.); WOOKAP CHOI
AF : School of Earth and Environmental Sciences, Seoul National University/Seoul/Corée, République de (1 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (2 aut., 3 aut., 4 aut.); Wookap School of Earth and Environmental Sciences, Seoul National University/Seoul/Corée, République de (5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2004; Vol. 109; No. D3; D03301.1-D03302.16; Bibl. 1 P.1/4
LA : Anglais
EA : Received 21 April 2003; revised 19 [i] Seasonal variations of several trace constituents near the tropopause are analyzed based on satellite measurements, and results are compared to a recent numerical model simulation. We examine methane, water vapor, and nitrogen oxides (NOx) derived from Halogen Occultation Experiment (HALOE) satellite observations; these species have strong gradients near the tropopause, so that their seasonality is indicative of stratosphere-troposphere exchange (STE) and circulation in the near-tropopause region. Model results are from the Model for Ozone and Related Chemical Tracers (MOZART) stratosphere-troposphere chemical transport model (CTM). Results show overall good agreement between observations and model simulations for methane and water vapor, whereas nitrogen oxides near the tropopause are much lower in the model than suggested by HALOE data. The latter difference is probably related to the lightning and convective parameterizations incorporated in MOZART, which produce NOx maxima not near the tropopause, but in the upper troposphere. Constituent seasonal variations highlight the imporatance of the Northern Hemisphere (NH) summer monsoons as regions for transport into the lowermost stratosphere. In MOZART, there is clear evidence that air from the monsoon region is transported into the tropics and entrained into the upward Brewer-Dobson circulation, bypassing the tropical tropopause.
CC : 220; 001E
FD : Variation saisonnière; Méthane; Vapeur eau; Azote oxyde; Satellite NEAR; Tropopause; Observation par satellite; Modèle chimique; Simulation numérique; Occultation; Satellite UARS; Interaction stratosphère troposphère; Ozone; Traceur; Stratosphère; Troposphère; Foudre; Paramétrisation; Mousson été; Atmosphère claire; Hémisphère Nord
ED : seasonal variations; methane; water vapor; Nitrogen oxide; NEAR satellite; Tropopause; Satellite observation; Chemical model; digital simulation; Occultation; UARS satellite; Stratosphere troposphere coupling; ozone; tracers; stratosphere; troposphere; lightning; Parameterization; Summer monsoon; Clear air; Northern Hemisphere
SD : Variación estacional; Metano; Vapor agua; Nitrógeno óxido; Satélite NEAR; Tropopausa; Observación por satélite; Modelo químico; Simulación numérica; Ocultación; Satélite UARS; Interacción estratósfera tropósfera; Ozono; Trazador; Estratosfera; Rayo; Parametrización; Monzón verano; Atmósfera clara; Hemisferio norte
LO : INIST-3144.354000119345860220
ID : 04-0207035

Links to Exploration step

Pascal:04-0207035

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations</title>
<author>
<name sortKey="Mijeong Park" sort="Mijeong Park" uniqKey="Mijeong Park" last="Mijeong Park">MIJEONG PARK</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Environmental Sciences, Seoul National University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Randel, William J" sort="Randel, William J" uniqKey="Randel W" first="William J." last="Randel">William J. Randel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, Douglas E" sort="Kinnison, Douglas E" uniqKey="Kinnison D" first="Douglas E." last="Kinnison">Douglas E. Kinnison</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Rolando R" sort="Garcia, Rolando R" uniqKey="Garcia R" first="Rolando R." last="Garcia">Rolando R. Garcia</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wookap Choi" sort="Wookap Choi" uniqKey="Wookap Choi" last="Wookap Choi">WOOKAP CHOI</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Wookap School of Earth and Environmental Sciences, Seoul National University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0207035</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0207035 INIST</idno>
<idno type="RBID">Pascal:04-0207035</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations</title>
<author>
<name sortKey="Mijeong Park" sort="Mijeong Park" uniqKey="Mijeong Park" last="Mijeong Park">MIJEONG PARK</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Environmental Sciences, Seoul National University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Randel, William J" sort="Randel, William J" uniqKey="Randel W" first="William J." last="Randel">William J. Randel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, Douglas E" sort="Kinnison, Douglas E" uniqKey="Kinnison D" first="Douglas E." last="Kinnison">Douglas E. Kinnison</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Rolando R" sort="Garcia, Rolando R" uniqKey="Garcia R" first="Rolando R." last="Garcia">Rolando R. Garcia</name>
<affiliation>
<inist:fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wookap Choi" sort="Wookap Choi" uniqKey="Wookap Choi" last="Wookap Choi">WOOKAP CHOI</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Wookap School of Earth and Environmental Sciences, Seoul National University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical model</term>
<term>Clear air</term>
<term>NEAR satellite</term>
<term>Nitrogen oxide</term>
<term>Northern Hemisphere</term>
<term>Occultation</term>
<term>Parameterization</term>
<term>Satellite observation</term>
<term>Stratosphere troposphere coupling</term>
<term>Summer monsoon</term>
<term>Tropopause</term>
<term>UARS satellite</term>
<term>digital simulation</term>
<term>lightning</term>
<term>methane</term>
<term>ozone</term>
<term>seasonal variations</term>
<term>stratosphere</term>
<term>tracers</term>
<term>troposphere</term>
<term>water vapor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Variation saisonnière</term>
<term>Méthane</term>
<term>Vapeur eau</term>
<term>Azote oxyde</term>
<term>Satellite NEAR</term>
<term>Tropopause</term>
<term>Observation par satellite</term>
<term>Modèle chimique</term>
<term>Simulation numérique</term>
<term>Occultation</term>
<term>Satellite UARS</term>
<term>Interaction stratosphère troposphère</term>
<term>Ozone</term>
<term>Traceur</term>
<term>Stratosphère</term>
<term>Troposphère</term>
<term>Foudre</term>
<term>Paramétrisation</term>
<term>Mousson été</term>
<term>Atmosphère claire</term>
<term>Hémisphère Nord</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Received 21 April 2003; revised 19 [i] Seasonal variations of several trace constituents near the tropopause are analyzed based on satellite measurements, and results are compared to a recent numerical model simulation. We examine methane, water vapor, and nitrogen oxides (NO
<sub>x</sub>
) derived from Halogen Occultation Experiment (HALOE) satellite observations; these species have strong gradients near the tropopause, so that their seasonality is indicative of stratosphere-troposphere exchange (STE) and circulation in the near-tropopause region. Model results are from the Model for Ozone and Related Chemical Tracers (MOZART) stratosphere-troposphere chemical transport model (CTM). Results show overall good agreement between observations and model simulations for methane and water vapor, whereas nitrogen oxides near the tropopause are much lower in the model than suggested by HALOE data. The latter difference is probably related to the lightning and convective parameterizations incorporated in MOZART, which produce NO
<sub>x</sub>
maxima not near the tropopause, but in the upper troposphere. Constituent seasonal variations highlight the imporatance of the Northern Hemisphere (NH) summer monsoons as regions for transport into the lowermost stratosphere. In MOZART, there is clear evidence that air from the monsoon region is transported into the tropics and entrained into the upward Brewer-Dobson circulation, bypassing the tropical tropopause.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>109</s2>
</fA05>
<fA06>
<s2>D3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MIJEONG PARK</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RANDEL (William J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KINNISON (Douglas E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GARCIA (Rolando R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WOOKAP CHOI</s1>
</fA11>
<fA14 i1="01">
<s1>School of Earth and Environmental Sciences, Seoul National University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Wookap School of Earth and Environmental Sciences, Seoul National University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>D03301.1-D03302.16</s2>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000119345860220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 P.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0207035</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Received 21 April 2003; revised 19 [i] Seasonal variations of several trace constituents near the tropopause are analyzed based on satellite measurements, and results are compared to a recent numerical model simulation. We examine methane, water vapor, and nitrogen oxides (NO
<sub>x</sub>
) derived from Halogen Occultation Experiment (HALOE) satellite observations; these species have strong gradients near the tropopause, so that their seasonality is indicative of stratosphere-troposphere exchange (STE) and circulation in the near-tropopause region. Model results are from the Model for Ozone and Related Chemical Tracers (MOZART) stratosphere-troposphere chemical transport model (CTM). Results show overall good agreement between observations and model simulations for methane and water vapor, whereas nitrogen oxides near the tropopause are much lower in the model than suggested by HALOE data. The latter difference is probably related to the lightning and convective parameterizations incorporated in MOZART, which produce NO
<sub>x</sub>
maxima not near the tropopause, but in the upper troposphere. Constituent seasonal variations highlight the imporatance of the Northern Hemisphere (NH) summer monsoons as regions for transport into the lowermost stratosphere. In MOZART, there is clear evidence that air from the monsoon region is transported into the tropics and entrained into the upward Brewer-Dobson circulation, bypassing the tropical tropopause.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Variation saisonnière</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>seasonal variations</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Variación estacional</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Méthane</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>methane</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Metano</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Vapeur eau</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>water vapor</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Vapor agua</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Azote oxyde</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nitrogen oxide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Nitrógeno óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Satellite NEAR</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>NEAR satellite</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Satélite NEAR</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Tropopause</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tropopause</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tropopausa</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Simulation numérique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>digital simulation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Simulación numérica</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Occultation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Occultation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ocultación</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Satellite UARS</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>UARS satellite</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Satélite UARS</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Interaction stratosphère troposphère</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Stratosphere troposphere coupling</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Interacción estratósfera tropósfera</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>ozone</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>tracers</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Stratosphère</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>stratosphere</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Estratosfera</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Foudre</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>lightning</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Rayo</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Paramétrisation</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Parameterization</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Parametrización</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Mousson été</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Summer monsoon</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Monzón verano</s0>
<s5>44</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Atmosphère claire</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Clear air</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Atmósfera clara</s0>
<s5>45</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Hémisphère Nord</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>Northern Hemisphere</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Hemisferio norte</s0>
<s5>46</s5>
</fC03>
<fN21>
<s1>138</s1>
</fN21>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0207035 INIST</NO>
<ET>Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations</ET>
<AU>MIJEONG PARK; RANDEL (William J.); KINNISON (Douglas E.); GARCIA (Rolando R.); WOOKAP CHOI</AU>
<AF>School of Earth and Environmental Sciences, Seoul National University/Seoul/Corée, République de (1 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (2 aut., 3 aut., 4 aut.); Wookap School of Earth and Environmental Sciences, Seoul National University/Seoul/Corée, République de (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2004; Vol. 109; No. D3; D03301.1-D03302.16; Bibl. 1 P.1/4</SO>
<LA>Anglais</LA>
<EA>Received 21 April 2003; revised 19 [i] Seasonal variations of several trace constituents near the tropopause are analyzed based on satellite measurements, and results are compared to a recent numerical model simulation. We examine methane, water vapor, and nitrogen oxides (NO
<sub>x</sub>
) derived from Halogen Occultation Experiment (HALOE) satellite observations; these species have strong gradients near the tropopause, so that their seasonality is indicative of stratosphere-troposphere exchange (STE) and circulation in the near-tropopause region. Model results are from the Model for Ozone and Related Chemical Tracers (MOZART) stratosphere-troposphere chemical transport model (CTM). Results show overall good agreement between observations and model simulations for methane and water vapor, whereas nitrogen oxides near the tropopause are much lower in the model than suggested by HALOE data. The latter difference is probably related to the lightning and convective parameterizations incorporated in MOZART, which produce NO
<sub>x</sub>
maxima not near the tropopause, but in the upper troposphere. Constituent seasonal variations highlight the imporatance of the Northern Hemisphere (NH) summer monsoons as regions for transport into the lowermost stratosphere. In MOZART, there is clear evidence that air from the monsoon region is transported into the tropics and entrained into the upward Brewer-Dobson circulation, bypassing the tropical tropopause.</EA>
<CC>220; 001E</CC>
<FD>Variation saisonnière; Méthane; Vapeur eau; Azote oxyde; Satellite NEAR; Tropopause; Observation par satellite; Modèle chimique; Simulation numérique; Occultation; Satellite UARS; Interaction stratosphère troposphère; Ozone; Traceur; Stratosphère; Troposphère; Foudre; Paramétrisation; Mousson été; Atmosphère claire; Hémisphère Nord</FD>
<ED>seasonal variations; methane; water vapor; Nitrogen oxide; NEAR satellite; Tropopause; Satellite observation; Chemical model; digital simulation; Occultation; UARS satellite; Stratosphere troposphere coupling; ozone; tracers; stratosphere; troposphere; lightning; Parameterization; Summer monsoon; Clear air; Northern Hemisphere</ED>
<SD>Variación estacional; Metano; Vapor agua; Nitrógeno óxido; Satélite NEAR; Tropopausa; Observación por satélite; Modelo químico; Simulación numérica; Ocultación; Satélite UARS; Interacción estratósfera tropósfera; Ozono; Trazador; Estratosfera; Rayo; Parametrización; Monzón verano; Atmósfera clara; Hemisferio norte</SD>
<LO>INIST-3144.354000119345860220</LO>
<ID>04-0207035</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000194 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000194 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0207035
   |texte=   Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023