Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2

Identifieur interne : 000011 ( Istex/Corpus ); précédent : 000010; suivant : 000012

A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2

Auteurs : Larry W. Horowitz ; Stacy Walters ; Denise L. Mauzerall ; Louisa K. Emmons ; Philip J. Rasch ; Claire Granier ; Xuexi Tie ; Jean Rançois Lamarque ; Martin G. Schultz ; Geoffrey S. Tyndall ; John J. Orlando ; Guy P. Brasseur

Source :

RBID : ISTEX:1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9

Abstract

We have developed a global three‐dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20‐min time step and a horizontal resolution of 2.8° latitude × 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux‐form semi‐Lagrangian scheme with a pressure fixer. Subgrid‐scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long‐lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.

Url:
DOI: 10.1029/2002JD002853

Links to Exploration step

ISTEX:1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<mods:affiliation>E-mail: larry.horowitz@noaa.gov</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<mods:affiliation>Woodrow Wilson School, Princeton University, New Jersey, Princeton, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa K" sort="Emmons, Louisa K" uniqKey="Emmons L" first="Louisa K." last="Emmons">Louisa K. Emmons</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Philip J" sort="Rasch, Philip J" uniqKey="Rasch P" first="Philip J." last="Rasch">Philip J. Rasch</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<mods:affiliation>Aeronomy Laboratory, NOAA, Boulder, Colorado, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Service d'Aeronomie, University of Paris, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tie, Xuexi" sort="Tie, Xuexi" uniqKey="Tie X" first="Xuexi" last="Tie">Xuexi Tie</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, Jean Rancois" sort="Lamarque, Jean Rancois" uniqKey="Lamarque J" first="Jean Rançois" last="Lamarque">Jean Rançois Lamarque</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Martin G" sort="Schultz, Martin G" uniqKey="Schultz M" first="Martin G." last="Schultz">Martin G. Schultz</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tyndall, Geoffrey S" sort="Tyndall, Geoffrey S" uniqKey="Tyndall G" first="Geoffrey S." last="Tyndall">Geoffrey S. Tyndall</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orlando, John J" sort="Orlando, John J" uniqKey="Orlando J" first="John J." last="Orlando">John J. Orlando</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1029/2002JD002853</idno>
<idno type="url">https://api.istex.fr/document/1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<mods:affiliation>E-mail: larry.horowitz@noaa.gov</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<mods:affiliation>Woodrow Wilson School, Princeton University, New Jersey, Princeton, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa K" sort="Emmons, Louisa K" uniqKey="Emmons L" first="Louisa K." last="Emmons">Louisa K. Emmons</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rasch, Philip J" sort="Rasch, Philip J" uniqKey="Rasch P" first="Philip J." last="Rasch">Philip J. Rasch</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<mods:affiliation>Aeronomy Laboratory, NOAA, Boulder, Colorado, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Service d'Aeronomie, University of Paris, Paris, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tie, Xuexi" sort="Tie, Xuexi" uniqKey="Tie X" first="Xuexi" last="Tie">Xuexi Tie</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, Jean Rancois" sort="Lamarque, Jean Rancois" uniqKey="Lamarque J" first="Jean Rançois" last="Lamarque">Jean Rançois Lamarque</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schultz, Martin G" sort="Schultz, Martin G" uniqKey="Schultz M" first="Martin G." last="Schultz">Martin G. Schultz</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tyndall, Geoffrey S" sort="Tyndall, Geoffrey S" uniqKey="Tyndall G" first="Geoffrey S." last="Tyndall">Geoffrey S. Tyndall</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Orlando, John J" sort="Orlando, John J" uniqKey="Orlando J" first="John J." last="Orlando">John J. Orlando</name>
<affiliation>
<mods:affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<mods:affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2003-12-27">2003-12-27</date>
<biblScope unit="volume">108</biblScope>
<biblScope unit="issue">D24</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9</idno>
<idno type="DOI">10.1029/2002JD002853</idno>
<idno type="ArticleID">2002JD002853</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We have developed a global three‐dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20‐min time step and a horizontal resolution of 2.8° latitude × 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux‐form semi‐Lagrangian scheme with a pressure fixer. Subgrid‐scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long‐lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Larry W. Horowitz</name>
<affiliations>
<json:string>E-mail: larry.horowitz@noaa.gov</json:string>
<json:string>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Stacy Walters</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Denise L. Mauzerall</name>
<affiliations>
<json:string>Woodrow Wilson School, Princeton University, New Jersey, Princeton, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Louisa K. Emmons</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philip J. Rasch</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Claire Granier</name>
<affiliations>
<json:string>Aeronomy Laboratory, NOAA, Boulder, Colorado, USA</json:string>
<json:string>Service d'Aeronomie, University of Paris, Paris, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xuexi Tie</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean‐François Lamarque</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Martin G. Schultz</name>
<affiliations>
<json:string>Max Planck Institute for Meteorology, Hamburg, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Geoffrey S. Tyndall</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>John J. Orlando</name>
<affiliations>
<json:string>National Center for Atmospheric Research, Colorado, Boulder, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Guy P. Brasseur</name>
<affiliations>
<json:string>Max Planck Institute for Meteorology, Hamburg, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tropospheric ozone</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chemical transport model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tropospheric chemistry</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>We have developed a global three‐dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20‐min time step and a horizontal resolution of 2.8° latitude × 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux‐form semi‐Lagrangian scheme with a pressure fixer. Subgrid‐scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long‐lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>3118</abstractCharCount>
<pdfWordCount>12459</pdfWordCount>
<pdfCharCount>77679</pdfCharCount>
<pdfPageCount>29</pdfPageCount>
<abstractWordCount>451</abstractWordCount>
</qualityIndicators>
<title>A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>108</volume>
<pages>
<total>25</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>D24</issue>
<subject>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Constituent sources and sinks</value>
</json:item>
<json:item>
<value>Troposphere: composition and chemistry</value>
</json:item>
<json:item>
<value>Troposphere: constituent transport and chemistry</value>
</json:item>
<json:item>
<value>Biosphere/atmosphere interactions</value>
</json:item>
<json:item>
<value>Evolution of the atmosphere</value>
</json:item>
<json:item>
<value>GLOBAL CHANGE</value>
</json:item>
<json:item>
<value>Atmosphere</value>
</json:item>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
</subject>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Atmospheres</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
</host>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1029/2002JD002853</json:string>
</doi>
<id>1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2003</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
<author>
<persName>
<forename type="first">Larry W.</forename>
<surname>Horowitz</surname>
</persName>
<email>larry.horowitz@noaa.gov</email>
<affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Stacy</forename>
<surname>Walters</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Denise L.</forename>
<surname>Mauzerall</surname>
</persName>
<affiliation>Woodrow Wilson School, Princeton University, New Jersey, Princeton, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Louisa K.</forename>
<surname>Emmons</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Philip J.</forename>
<surname>Rasch</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Claire</forename>
<surname>Granier</surname>
</persName>
<affiliation>Aeronomy Laboratory, NOAA, Boulder, Colorado, USA</affiliation>
<affiliation>Service d'Aeronomie, University of Paris, Paris, France</affiliation>
</author>
<author>
<persName>
<forename type="first">Xuexi</forename>
<surname>Tie</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Jean‐François</forename>
<surname>Lamarque</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Martin G.</forename>
<surname>Schultz</surname>
</persName>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">Geoffrey S.</forename>
<surname>Tyndall</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">John J.</forename>
<surname>Orlando</surname>
</persName>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Guy P.</forename>
<surname>Brasseur</surname>
</persName>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202d</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2003-12-27"></date>
<biblScope unit="volume">108</biblScope>
<biblScope unit="issue">D24</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9</idno>
<idno type="DOI">10.1029/2002JD002853</idno>
<idno type="ArticleID">2002JD002853</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2003</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We have developed a global three‐dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20‐min time step and a horizontal resolution of 2.8° latitude × 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux‐form semi‐Lagrangian scheme with a pressure fixer. Subgrid‐scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long‐lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>tropospheric ozone</term>
</item>
<item>
<term>chemical transport model</term>
</item>
<item>
<term>tropospheric chemistry</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Index Terms</head>
<item>
<term>Composition and Chemistry</term>
</item>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Constituent sources and sinks</term>
</item>
<item>
<term>Troposphere: composition and chemistry</term>
</item>
<item>
<term>Troposphere: constituent transport and chemistry</term>
</item>
<item>
<term>Biosphere/atmosphere interactions</term>
</item>
<item>
<term>Evolution of the atmosphere</term>
</item>
<item>
<term>GLOBAL CHANGE</term>
</item>
<item>
<term>Atmosphere</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Composition and Chemistry</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2002-08-16">Received</change>
<change when="2003-07-14">Registration</change>
<change when="2003-12-27">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd10160">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="240">
<doi>10.1002/jgrd.v108.D24</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="108">108</numbering>
<numbering type="journalIssue">D24</numbering>
</numberingGroup>
<coverDate startDate="2003-12-27">27 December 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="560" type="article" status="forIssue">
<doi>10.1029/2002JD002853</doi>
<idGroup>
<id type="editorialOffice" value="2002JD002853"></id>
<id type="society" value="4784"></id>
<id type="unit" value="JGRD10160"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="25"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Composition and Chemistry</title>
<title type="tocHeading1">Composition and Chemistry</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2003 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2002-08-16"></event>
<event type="manuscriptRevised" date="2003-05-10"></event>
<event type="manuscriptAccepted" date="2003-07-14"></event>
<event type="firstOnline" date="2003-12-24"></event>
<event type="publishedOnlineFinalForm" date="2003-12-24"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.42_TO_WileyML3Gv1.0.3 version:1.2; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2013-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ACH">Composition and Chemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0322">Constituent sources and sinks</subject>
<subject href="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0368">Troposphere: constituent transport and chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1610">Atmosphere</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd10160-cit-0000" type="self">
<author>
<familyName>Horowitz</familyName>
,
<givenNames>L. W.</givenNames>
</author>
, et al. (
<pubYear year="2003">2003</pubYear>
),
<articleTitle>A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>108</vol>
, 4784, doi:
<accessionId ref="info:doi/10.1029/2002JD002853">10.1029/2002JD002853</accessionId>
,
<issue>D24</issue>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD10160.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="13"></count>
<count type="tableTotal" number="6"></count>
</countGroup>
<titleGroup>
<title type="main">A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
<title type="short">MOZART‐2 DESCRIPTION AND EVALUATION</title>
<title type="shortAuthors">Horowitz
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrd10160-cr-0001" affiliationRef="#jgrd10160-aff-0001">
<personName>
<givenNames>Larry W.</givenNames>
<familyName>Horowitz</familyName>
</personName>
<contactDetails>
<email normalForm="larry.horowitz@noaa.gov">larry.horowitz@noaa.gov</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0002" affiliationRef="#jgrd10160-aff-0002">
<personName>
<givenNames>Stacy</givenNames>
<familyName>Walters</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0003" affiliationRef="#jgrd10160-aff-0003">
<personName>
<givenNames>Denise L.</givenNames>
<familyName>Mauzerall</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0004" affiliationRef="#jgrd10160-aff-0002">
<personName>
<givenNames>Louisa K.</givenNames>
<familyName>Emmons</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0005" affiliationRef="#jgrd10160-aff-0002">
<personName>
<givenNames>Philip J.</givenNames>
<familyName>Rasch</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0006" affiliationRef="#jgrd10160-aff-0004 #jgrd10160-aff-0005">
<personName>
<givenNames>Claire</givenNames>
<familyName>Granier</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0007" affiliationRef="#jgrd10160-aff-0002">
<personName>
<givenNames>Xuexi</givenNames>
<familyName>Tie</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0008" affiliationRef="#jgrd10160-aff-0002">
<personName>
<givenNames>Jean‐François</givenNames>
<familyName>Lamarque</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0009" affiliationRef="#jgrd10160-aff-0006">
<personName>
<givenNames>Martin G.</givenNames>
<familyName>Schultz</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0010" affiliationRef="#jgrd10160-aff-0002">
<personName>
<givenNames>Geoffrey S.</givenNames>
<familyName>Tyndall</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0011" affiliationRef="#jgrd10160-aff-0002">
<personName>
<givenNames>John J.</givenNames>
<familyName>Orlando</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd10160-cr-0012" affiliationRef="#jgrd10160-aff-0006">
<personName>
<givenNames>Guy P.</givenNames>
<familyName>Brasseur</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="jgrd10160-aff-0001">
<orgDiv>Geophysical Fluid Dynamics Laboratory</orgDiv>
<orgName>NOAA</orgName>
<address>
<city>Princeton</city>
<countryPart>New Jersey</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd10160-aff-0002">
<orgName>National Center for Atmospheric Research</orgName>
<address>
<city>Boulder</city>
<countryPart>Colorado</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd10160-aff-0003">
<orgDiv>Woodrow Wilson School</orgDiv>
<orgName>Princeton University</orgName>
<address>
<city>Princeton</city>
<countryPart>New Jersey</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="jgrd10160-aff-0004">
<orgDiv>Aeronomy Laboratory</orgDiv>
<orgName>NOAA</orgName>
<address>
<city>Boulder</city>
<countryPart>Colorado</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="FR" type="organization" xml:id="jgrd10160-aff-0005">
<orgDiv>Service d'Aeronomie</orgDiv>
<orgName>University of Paris</orgName>
<address>
<city>Paris</city>
<country>France</country>
</address>
</affiliation>
<affiliation countryCode="DE" type="organization" xml:id="jgrd10160-aff-0006">
<orgName>Max Planck Institute for Meteorology</orgName>
<address>
<city>Hamburg</city>
<country>Germany</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd10160-kwd-0001">tropospheric ozone</keyword>
<keyword xml:id="jgrd10160-kwd-0002">chemical transport model</keyword>
<keyword xml:id="jgrd10160-kwd-0003">tropospheric chemistry</keyword>
</keywordGroup>
<supportingInformation xml:id="jgrd10160-sup-0000">
<p xml:id="jgrd10160-para-0001">Auxiliary material for this article contains chemical reactions and photolysis reactions in MOZART as well as mean observed and simulated regional vertical profiles of ethane, propane, formaldehyde, acetone, hydrogen peroxide, and methlyhydroperoxide.</p>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0002-Ap01"></mediaResource>
<caption>2002JD002853‐Ap01.eps</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0003-Ap02"></mediaResource>
<caption>2002JD002853‐Ap02.eps</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0004-Ap03"></mediaResource>
<caption>2002JD002853‐Ap03.eps</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0005-Ap04"></mediaResource>
<caption>2002JD002853‐Ap04.eps</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0006-Ap05"></mediaResource>
<caption>2002JD002853‐Ap05.eps</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="application/postscript" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0007-Ap06"></mediaResource>
<caption>2002JD002853‐Ap06.eps</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0008-SUPPL-TABLE1"></mediaResource>
<caption>2002JD002853‐SUPPL‐TABLE1.txt</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0009-SUPPL-TABLE2"></mediaResource>
<caption>2002JD002853‐SUPPL‐TABLE2.txt</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrd10160:jgrd10160-sup-0001-README"></mediaResource>
<caption>README.txt</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd10160-para-0017" label="1">We have developed a global three‐dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20‐min time step and a horizontal resolution of 2.8° latitude × 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux‐form semi‐Lagrangian scheme with a pressure fixer. Subgrid‐scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long‐lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NO
<sub>
<i>x</i>
</sub>
) and nitric acid (HNO
<sub>3</sub>
) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MOZART‐2 DESCRIPTION AND EVALUATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2</title>
</titleInfo>
<name type="personal">
<namePart type="given">Larry W.</namePart>
<namePart type="family">Horowitz</namePart>
<affiliation>E-mail: larry.horowitz@noaa.gov</affiliation>
<affiliation>Geophysical Fluid Dynamics Laboratory, NOAA, New Jersey, Princeton, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stacy</namePart>
<namePart type="family">Walters</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Denise L.</namePart>
<namePart type="family">Mauzerall</namePart>
<affiliation>Woodrow Wilson School, Princeton University, New Jersey, Princeton, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Louisa K.</namePart>
<namePart type="family">Emmons</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philip J.</namePart>
<namePart type="family">Rasch</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Granier</namePart>
<affiliation>Aeronomy Laboratory, NOAA, Boulder, Colorado, USA</affiliation>
<affiliation>Service d'Aeronomie, University of Paris, Paris, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuexi</namePart>
<namePart type="family">Tie</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean‐François</namePart>
<namePart type="family">Lamarque</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin G.</namePart>
<namePart type="family">Schultz</namePart>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Geoffrey S.</namePart>
<namePart type="family">Tyndall</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John J.</namePart>
<namePart type="family">Orlando</namePart>
<affiliation>National Center for Atmospheric Research, Colorado, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy P.</namePart>
<namePart type="family">Brasseur</namePart>
<affiliation>Max Planck Institute for Meteorology, Hamburg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2003-12-27</dateIssued>
<dateCaptured encoding="w3cdtf">2002-08-16</dateCaptured>
<dateValid encoding="w3cdtf">2003-07-14</dateValid>
<edition>Horowitz, L. W., et al. (2003), A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108, 4784, doi:10.1029/2002JD002853, D24.</edition>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">13</extent>
<extent unit="tables">6</extent>
</physicalDescription>
<abstract>We have developed a global three‐dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20‐min time step and a horizontal resolution of 2.8° latitude × 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux‐form semi‐Lagrangian scheme with a pressure fixer. Subgrid‐scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long‐lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NOx) and nitric acid (HNO3) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.</abstract>
<subject>
<genre>Keywords</genre>
<topic>tropospheric ozone</topic>
<topic>chemical transport model</topic>
<topic>tropospheric chemistry</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<note type="content"> Auxiliary material for this article contains chemical reactions and photolysis reactions in MOZART as well as mean observed and simulated regional vertical profiles of ethane, propane, formaldehyde, acetone, hydrogen peroxide, and methlyhydroperoxide.Supporting Info Item: 2002JD002853‐Ap01.eps - 2002JD002853‐Ap02.eps - 2002JD002853‐Ap03.eps - 2002JD002853‐Ap04.eps - 2002JD002853‐Ap05.eps - 2002JD002853‐Ap06.eps - 2002JD002853‐SUPPL‐TABLE1.txt - 2002JD002853‐SUPPL‐TABLE2.txt - README.txt - </note>
<subject>
<genre>Index Terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ACH">Composition and Chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0322">Constituent sources and sinks</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0368">Troposphere: constituent transport and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0315">Biosphere/atmosphere interactions</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0325">Evolution of the atmosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1600">GLOBAL CHANGE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1610">Atmosphere</topic>
</subject>
<subject>
<genre>article category</genre>
<topic>Composition and Chemistry</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>108</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D24</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>25</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9</identifier>
<identifier type="DOI">10.1029/2002JD002853</identifier>
<identifier type="ArticleID">2002JD002853</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2003 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1C4CD13168E34A7B6C53907BEAFFA99E1B6831F9
   |texte=   A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023