Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polynomiality of invariants, unimodularity and adapted pairs

Identifieur interne : 000345 ( Istex/Checkpoint ); précédent : 000344; suivant : 000346

Polynomiality of invariants, unimodularity and adapted pairs

Auteurs : Anthony Joseph [Israël] ; Doron Shafrir [Israël]

Source :

RBID : ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D

Abstract

Abstract: Let $$ \mathfrak{a} $$ be a finite-dimensional Lie algebra and $$ Y\left( \mathfrak{a} \right) $$ the $$ \mathfrak{a} $$ invariant subalgebra of its symmetric algebra $$ S\left( \mathfrak{a} \right) $$ under adjoint action. Recently there has been considerable interest in studying situations when $$ Y\left( \mathfrak{a} \right) $$ may be polynomial on index $$ \mathfrak{a} $$ generators, for example if $$ \mathfrak{a} $$ is a biparabolic or a centralizer $$ {\mathfrak{g}^x} $$ in a semisimple Lie algebra $$ \mathfrak{g} $$. Here a sum rule of Ooms and Van den Bergh on the degrees d i of the generators is extended to the case when $$ \mathfrak{a} $$ is unimodular and the fundamental semi-invariant $$ {p_\mathfrak{a}} $$ of $$ \mathfrak{a} $$ is an invariant. It is noted that these last two conditions always hold for a centralizer $$ {\mathfrak{g}^x} $$ and moreover that one has GKdim $$ Y\left( {{\mathfrak{g}^x}} \right) $$ = index $$ {\mathfrak{g}^x} $$, even though $$ S\left( {{\mathfrak{g}^x}} \right) $$ may admit proper semi-invariants. Applications are given to the notion of an adapted pair (h, η) for $$ \mathfrak{a} $$. Under the above conditions it is shown that the set of eigenvalues {m i} of -ad h on $$ {\mathfrak{a}^\eta } $$ must equal {(d i - 1)}. This gives rise to a condition under which $$ Y\left( \mathfrak{a} \right) $$ cannot be polynomial on index $$ \mathfrak{a} $$ generators. Finally the theorem of Bolsinov is extended to the case when $$ {p_\mathfrak{a}} $$ is nonscalar.

Url:
DOI: 10.1007/s00031-010-9113-6


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polynomiality of invariants, unimodularity and adapted pairs</title>
<author>
<name sortKey="Joseph, Anthony" sort="Joseph, Anthony" uniqKey="Joseph A" first="Anthony" last="Joseph">Anthony Joseph</name>
</author>
<author>
<name sortKey="Shafrir, Doron" sort="Shafrir, Doron" uniqKey="Shafrir D" first="Doron" last="Shafrir">Doron Shafrir</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1007/s00031-010-9113-6</idno>
<idno type="url">https://api.istex.fr/document/1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000586</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000586</idno>
<idno type="wicri:Area/Istex/Curation">000586</idno>
<idno type="wicri:Area/Istex/Checkpoint">000345</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000345</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Polynomiality of invariants, unimodularity and adapted pairs</title>
<author>
<name sortKey="Joseph, Anthony" sort="Joseph, Anthony" uniqKey="Joseph A" first="Anthony" last="Joseph">Anthony Joseph</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Donald Frey Professional Chair, Department of Mathematics, Weizmann Institute of Science, 76100, Rehovot</wicri:regionArea>
<wicri:noRegion>Rehovot</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Israël</country>
</affiliation>
</author>
<author>
<name sortKey="Shafrir, Doron" sort="Shafrir, Doron" uniqKey="Shafrir D" first="Doron" last="Shafrir">Doron Shafrir</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Israël</country>
<wicri:regionArea>Department of Mathematics, Hebrew University, Givat Ram, 91904, Jerusalem</wicri:regionArea>
<wicri:noRegion>Jerusalem</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Transformation Groups</title>
<title level="j" type="abbrev">Transformation Groups</title>
<idno type="ISSN">1083-4362</idno>
<idno type="eISSN">1531-586X</idno>
<imprint>
<publisher>SP Birkhäuser Verlag Boston</publisher>
<pubPlace>Boston</pubPlace>
<date type="published" when="2010-12-01">2010-12-01</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="851">851</biblScope>
<biblScope unit="page" to="882">882</biblScope>
</imprint>
<idno type="ISSN">1083-4362</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1083-4362</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Let $$ \mathfrak{a} $$ be a finite-dimensional Lie algebra and $$ Y\left( \mathfrak{a} \right) $$ the $$ \mathfrak{a} $$ invariant subalgebra of its symmetric algebra $$ S\left( \mathfrak{a} \right) $$ under adjoint action. Recently there has been considerable interest in studying situations when $$ Y\left( \mathfrak{a} \right) $$ may be polynomial on index $$ \mathfrak{a} $$ generators, for example if $$ \mathfrak{a} $$ is a biparabolic or a centralizer $$ {\mathfrak{g}^x} $$ in a semisimple Lie algebra $$ \mathfrak{g} $$. Here a sum rule of Ooms and Van den Bergh on the degrees d i of the generators is extended to the case when $$ \mathfrak{a} $$ is unimodular and the fundamental semi-invariant $$ {p_\mathfrak{a}} $$ of $$ \mathfrak{a} $$ is an invariant. It is noted that these last two conditions always hold for a centralizer $$ {\mathfrak{g}^x} $$ and moreover that one has GKdim $$ Y\left( {{\mathfrak{g}^x}} \right) $$ = index $$ {\mathfrak{g}^x} $$, even though $$ S\left( {{\mathfrak{g}^x}} \right) $$ may admit proper semi-invariants. Applications are given to the notion of an adapted pair (h, η) for $$ \mathfrak{a} $$. Under the above conditions it is shown that the set of eigenvalues {m i} of -ad h on $$ {\mathfrak{a}^\eta } $$ must equal {(d i - 1)}. This gives rise to a condition under which $$ Y\left( \mathfrak{a} \right) $$ cannot be polynomial on index $$ \mathfrak{a} $$ generators. Finally the theorem of Bolsinov is extended to the case when $$ {p_\mathfrak{a}} $$ is nonscalar.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Israël</li>
</country>
</list>
<tree>
<country name="Israël">
<noRegion>
<name sortKey="Joseph, Anthony" sort="Joseph, Anthony" uniqKey="Joseph A" first="Anthony" last="Joseph">Anthony Joseph</name>
</noRegion>
<name sortKey="Joseph, Anthony" sort="Joseph, Anthony" uniqKey="Joseph A" first="Anthony" last="Joseph">Anthony Joseph</name>
<name sortKey="Shafrir, Doron" sort="Shafrir, Doron" uniqKey="Shafrir D" first="Doron" last="Shafrir">Doron Shafrir</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000345 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000345 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D
   |texte=   Polynomiality of invariants, unimodularity and adapted pairs
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022