Serveur d'exploration Bourbaki

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polynomiality of invariants, unimodularity and adapted pairs

Identifieur interne : 000586 ( Istex/Corpus ); précédent : 000585; suivant : 000587

Polynomiality of invariants, unimodularity and adapted pairs

Auteurs : Anthony Joseph ; Doron Shafrir

Source :

RBID : ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D

Abstract

Abstract: Let $$ \mathfrak{a} $$ be a finite-dimensional Lie algebra and $$ Y\left( \mathfrak{a} \right) $$ the $$ \mathfrak{a} $$ invariant subalgebra of its symmetric algebra $$ S\left( \mathfrak{a} \right) $$ under adjoint action. Recently there has been considerable interest in studying situations when $$ Y\left( \mathfrak{a} \right) $$ may be polynomial on index $$ \mathfrak{a} $$ generators, for example if $$ \mathfrak{a} $$ is a biparabolic or a centralizer $$ {\mathfrak{g}^x} $$ in a semisimple Lie algebra $$ \mathfrak{g} $$. Here a sum rule of Ooms and Van den Bergh on the degrees d i of the generators is extended to the case when $$ \mathfrak{a} $$ is unimodular and the fundamental semi-invariant $$ {p_\mathfrak{a}} $$ of $$ \mathfrak{a} $$ is an invariant. It is noted that these last two conditions always hold for a centralizer $$ {\mathfrak{g}^x} $$ and moreover that one has GKdim $$ Y\left( {{\mathfrak{g}^x}} \right) $$ = index $$ {\mathfrak{g}^x} $$, even though $$ S\left( {{\mathfrak{g}^x}} \right) $$ may admit proper semi-invariants. Applications are given to the notion of an adapted pair (h, η) for $$ \mathfrak{a} $$. Under the above conditions it is shown that the set of eigenvalues {m i} of -ad h on $$ {\mathfrak{a}^\eta } $$ must equal {(d i - 1)}. This gives rise to a condition under which $$ Y\left( \mathfrak{a} \right) $$ cannot be polynomial on index $$ \mathfrak{a} $$ generators. Finally the theorem of Bolsinov is extended to the case when $$ {p_\mathfrak{a}} $$ is nonscalar.

Url:
DOI: 10.1007/s00031-010-9113-6

Links to Exploration step

ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polynomiality of invariants, unimodularity and adapted pairs</title>
<author>
<name sortKey="Joseph, Anthony" sort="Joseph, Anthony" uniqKey="Joseph A" first="Anthony" last="Joseph">Anthony Joseph</name>
<affiliation>
<mods:affiliation>Donald Frey Professional Chair, Department of Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: anthony.joseph@weizmann.ac.il</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shafrir, Doron" sort="Shafrir, Doron" uniqKey="Shafrir D" first="Doron" last="Shafrir">Doron Shafrir</name>
<affiliation>
<mods:affiliation>Department of Mathematics, Hebrew University, Givat Ram, 91904, Jerusalem, Israel</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: doron.abc@gmail.com</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1007/s00031-010-9113-6</idno>
<idno type="url">https://api.istex.fr/document/1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000586</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000586</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Polynomiality of invariants, unimodularity and adapted pairs</title>
<author>
<name sortKey="Joseph, Anthony" sort="Joseph, Anthony" uniqKey="Joseph A" first="Anthony" last="Joseph">Anthony Joseph</name>
<affiliation>
<mods:affiliation>Donald Frey Professional Chair, Department of Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: anthony.joseph@weizmann.ac.il</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shafrir, Doron" sort="Shafrir, Doron" uniqKey="Shafrir D" first="Doron" last="Shafrir">Doron Shafrir</name>
<affiliation>
<mods:affiliation>Department of Mathematics, Hebrew University, Givat Ram, 91904, Jerusalem, Israel</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: doron.abc@gmail.com</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Transformation Groups</title>
<title level="j" type="abbrev">Transformation Groups</title>
<idno type="ISSN">1083-4362</idno>
<idno type="eISSN">1531-586X</idno>
<imprint>
<publisher>SP Birkhäuser Verlag Boston</publisher>
<pubPlace>Boston</pubPlace>
<date type="published" when="2010-12-01">2010-12-01</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="851">851</biblScope>
<biblScope unit="page" to="882">882</biblScope>
</imprint>
<idno type="ISSN">1083-4362</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1083-4362</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Let $$ \mathfrak{a} $$ be a finite-dimensional Lie algebra and $$ Y\left( \mathfrak{a} \right) $$ the $$ \mathfrak{a} $$ invariant subalgebra of its symmetric algebra $$ S\left( \mathfrak{a} \right) $$ under adjoint action. Recently there has been considerable interest in studying situations when $$ Y\left( \mathfrak{a} \right) $$ may be polynomial on index $$ \mathfrak{a} $$ generators, for example if $$ \mathfrak{a} $$ is a biparabolic or a centralizer $$ {\mathfrak{g}^x} $$ in a semisimple Lie algebra $$ \mathfrak{g} $$. Here a sum rule of Ooms and Van den Bergh on the degrees d i of the generators is extended to the case when $$ \mathfrak{a} $$ is unimodular and the fundamental semi-invariant $$ {p_\mathfrak{a}} $$ of $$ \mathfrak{a} $$ is an invariant. It is noted that these last two conditions always hold for a centralizer $$ {\mathfrak{g}^x} $$ and moreover that one has GKdim $$ Y\left( {{\mathfrak{g}^x}} \right) $$ = index $$ {\mathfrak{g}^x} $$, even though $$ S\left( {{\mathfrak{g}^x}} \right) $$ may admit proper semi-invariants. Applications are given to the notion of an adapted pair (h, η) for $$ \mathfrak{a} $$. Under the above conditions it is shown that the set of eigenvalues {m i} of -ad h on $$ {\mathfrak{a}^\eta } $$ must equal {(d i - 1)}. This gives rise to a condition under which $$ Y\left( \mathfrak{a} \right) $$ cannot be polynomial on index $$ \mathfrak{a} $$ generators. Finally the theorem of Bolsinov is extended to the case when $$ {p_\mathfrak{a}} $$ is nonscalar.</div>
</front>
</TEI>
<istex>
<corpusName>springer-journals</corpusName>
<author>
<json:item>
<name>Anthony Joseph</name>
<affiliations>
<json:string>Donald Frey Professional Chair, Department of Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel</json:string>
<json:string>E-mail: anthony.joseph@weizmann.ac.il</json:string>
</affiliations>
</json:item>
<json:item>
<name>Doron Shafrir</name>
<affiliations>
<json:string>Department of Mathematics, Hebrew University, Givat Ram, 91904, Jerusalem, Israel</json:string>
<json:string>E-mail: doron.abc@gmail.com</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>9113</json:string>
<json:string>s00031-010-9113-6</json:string>
</articleId>
<arkIstex>ark:/67375/VQC-1C6M7C7S-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: Let $$ \mathfrak{a} $$ be a finite-dimensional Lie algebra and $$ Y\left( \mathfrak{a} \right) $$ the $$ \mathfrak{a} $$ invariant subalgebra of its symmetric algebra $$ S\left( \mathfrak{a} \right) $$ under adjoint action. Recently there has been considerable interest in studying situations when $$ Y\left( \mathfrak{a} \right) $$ may be polynomial on index $$ \mathfrak{a} $$ generators, for example if $$ \mathfrak{a} $$ is a biparabolic or a centralizer $$ {\mathfrak{g}^x} $$ in a semisimple Lie algebra $$ \mathfrak{g} $$. Here a sum rule of Ooms and Van den Bergh on the degrees d i of the generators is extended to the case when $$ \mathfrak{a} $$ is unimodular and the fundamental semi-invariant $$ {p_\mathfrak{a}} $$ of $$ \mathfrak{a} $$ is an invariant. It is noted that these last two conditions always hold for a centralizer $$ {\mathfrak{g}^x} $$ and moreover that one has GKdim $$ Y\left( {{\mathfrak{g}^x}} \right) $$ = index $$ {\mathfrak{g}^x} $$, even though $$ S\left( {{\mathfrak{g}^x}} \right) $$ may admit proper semi-invariants. Applications are given to the notion of an adapted pair (h, η) for $$ \mathfrak{a} $$. Under the above conditions it is shown that the set of eigenvalues {m i} of -ad h on $$ {\mathfrak{a}^\eta } $$ must equal {(d i - 1)}. This gives rise to a condition under which $$ Y\left( \mathfrak{a} \right) $$ cannot be polynomial on index $$ \mathfrak{a} $$ generators. Finally the theorem of Bolsinov is extended to the case when $$ {p_\mathfrak{a}} $$ is nonscalar.</abstract>
<qualityIndicators>
<refBibsNative>false</refBibsNative>
<abstractWordCount>249</abstractWordCount>
<abstractCharCount>1525</abstractCharCount>
<keywordCount>0</keywordCount>
<score>9.988</score>
<pdfWordCount>15273</pdfWordCount>
<pdfCharCount>67515</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>32</pdfPageCount>
<pdfPageSize>439.37 x 666.141 pts</pdfPageSize>
</qualityIndicators>
<title>Polynomiality of invariants, unimodularity and adapted pairs</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Transformation Groups</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<issn>
<json:string>1083-4362</json:string>
</issn>
<eissn>
<json:string>1531-586X</json:string>
</eissn>
<journalId>
<json:string>31</json:string>
</journalId>
<volume>15</volume>
<issue>4</issue>
<pages>
<first>851</first>
<last>882</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Algebra</value>
</json:item>
<json:item>
<value>Topological Groups, Lie Groups</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/VQC-1C6M7C7S-7</json:string>
</ark>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1007/s00031-010-9113-6</json:string>
</doi>
<id>1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D/fulltext/zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D/fulltext/txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Polynomiality of invariants, unimodularity and adapted pairs</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">SP Birkhäuser Verlag Boston</publisher>
<pubPlace>Boston</pubPlace>
<availability>
<licence>
<p>Springer Science+Business Media, LLC, 2010</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>2010-01-12</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Polynomiality of invariants, unimodularity and adapted pairs</title>
<author xml:id="author-0000" corresp="yes">
<persName>
<forename type="first">Anthony</forename>
<surname>Joseph</surname>
</persName>
<email>anthony.joseph@weizmann.ac.il</email>
<affiliation>Donald Frey Professional Chair, Department of Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Doron</forename>
<surname>Shafrir</surname>
</persName>
<email>doron.abc@gmail.com</email>
<affiliation>Department of Mathematics, Hebrew University, Givat Ram, 91904, Jerusalem, Israel</affiliation>
</author>
<idno type="istex">1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D</idno>
<idno type="ark">ark:/67375/VQC-1C6M7C7S-7</idno>
<idno type="DOI">10.1007/s00031-010-9113-6</idno>
<idno type="article-id">9113</idno>
<idno type="article-id">s00031-010-9113-6</idno>
</analytic>
<monogr>
<title level="j">Transformation Groups</title>
<title level="j" type="abbrev">Transformation Groups</title>
<idno type="pISSN">1083-4362</idno>
<idno type="eISSN">1531-586X</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">13</idno>
<idno type="volume-issue-count">4</idno>
<imprint>
<publisher>SP Birkhäuser Verlag Boston</publisher>
<pubPlace>Boston</pubPlace>
<date type="published" when="2010-12-01"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="851">851</biblScope>
<biblScope unit="page" to="882">882</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010-01-12</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Let $$ \mathfrak{a} $$ be a finite-dimensional Lie algebra and $$ Y\left( \mathfrak{a} \right) $$ the $$ \mathfrak{a} $$ invariant subalgebra of its symmetric algebra $$ S\left( \mathfrak{a} \right) $$ under adjoint action. Recently there has been considerable interest in studying situations when $$ Y\left( \mathfrak{a} \right) $$ may be polynomial on index $$ \mathfrak{a} $$ generators, for example if $$ \mathfrak{a} $$ is a biparabolic or a centralizer $$ {\mathfrak{g}^x} $$ in a semisimple Lie algebra $$ \mathfrak{g} $$. Here a sum rule of Ooms and Van den Bergh on the degrees d i of the generators is extended to the case when $$ \mathfrak{a} $$ is unimodular and the fundamental semi-invariant $$ {p_\mathfrak{a}} $$ of $$ \mathfrak{a} $$ is an invariant. It is noted that these last two conditions always hold for a centralizer $$ {\mathfrak{g}^x} $$ and moreover that one has GKdim $$ Y\left( {{\mathfrak{g}^x}} \right) $$ = index $$ {\mathfrak{g}^x} $$, even though $$ S\left( {{\mathfrak{g}^x}} \right) $$ may admit proper semi-invariants. Applications are given to the notion of an adapted pair (h, η) for $$ \mathfrak{a} $$. Under the above conditions it is shown that the set of eigenvalues {m i} of -ad h on $$ {\mathfrak{a}^\eta } $$ must equal {(d i - 1)}. This gives rise to a condition under which $$ Y\left( \mathfrak{a} \right) $$ cannot be polynomial on index $$ \mathfrak{a} $$ generators. Finally the theorem of Bolsinov is extended to the case when $$ {p_\mathfrak{a}} $$ is nonscalar.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Mathematics</head>
<item>
<term>Algebra</term>
</item>
<item>
<term>Topological Groups, Lie Groups</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-01-12">Created</change>
<change when="2010-12-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-11-30">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>SP Birkhäuser Verlag Boston</PublisherName>
<PublisherLocation>Boston</PublisherLocation>
</PublisherInfo>
<Journal OutputMedium="All">
<JournalInfo JournalProductType="NonStandardArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>31</JournalID>
<JournalPrintISSN>1083-4362</JournalPrintISSN>
<JournalElectronicISSN>1531-586X</JournalElectronicISSN>
<JournalTitle>Transformation Groups</JournalTitle>
<JournalAbbreviatedTitle>Transformation Groups</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Mathematics</JournalSubject>
<JournalSubject Type="Secondary">Algebra</JournalSubject>
<JournalSubject Type="Secondary">Topological Groups, Lie Groups</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume OutputMedium="All">
<VolumeInfo TocLevels="0" VolumeType="Regular">
<VolumeIDStart>15</VolumeIDStart>
<VolumeIDEnd>15</VolumeIDEnd>
<VolumeIssueCount>4</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular" OutputMedium="All">
<IssueInfo IssueType="Regular" TocLevels="0">
<IssueIDStart>4</IssueIDStart>
<IssueIDEnd>4</IssueIDEnd>
<IssueArticleCount>13</IssueArticleCount>
<IssueHistory>
<OnlineDate>
<Year>2010</Year>
<Month>12</Month>
<Day>17</Day>
</OnlineDate>
<PrintDate>
<Year>2010</Year>
<Month>12</Month>
<Day>16</Day>
</PrintDate>
<CoverDate>
<Year>2010</Year>
<Month>12</Month>
</CoverDate>
<PricelistYear>2010</PricelistYear>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer Science+Business Media, LLC</CopyrightHolderName>
<CopyrightYear>2010</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="s00031-010-9113-6" OutputMedium="All">
<ArticleInfo ArticleType="OriginalPaper" ContainsESM="No" Language="En" NumberingStyle="Unnumbered" TocLevels="0">
<ArticleID>9113</ArticleID>
<ArticleDOI>10.1007/s00031-010-9113-6</ArticleDOI>
<ArticleSequenceNumber>6</ArticleSequenceNumber>
<ArticleTitle Language="En">Polynomiality of invariants, unimodularity and adapted pairs</ArticleTitle>
<ArticleFirstPage>851</ArticleFirstPage>
<ArticleLastPage>882</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2010</Year>
<Month>9</Month>
<Day>8</Day>
</RegistrationDate>
<Received>
<Year>2010</Year>
<Month>1</Month>
<Day>12</Day>
</Received>
<Accepted>
<Year>2010</Year>
<Month>5</Month>
<Day>21</Day>
</Accepted>
<OnlineDate>
<Year>2010</Year>
<Month>9</Month>
<Day>22</Day>
</OnlineDate>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer Science+Business Media, LLC</CopyrightHolderName>
<CopyrightYear>2010</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1" CorrespondingAffiliationID="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>Anthony</GivenName>
<FamilyName>Joseph</FamilyName>
</AuthorName>
<Contact>
<Email>anthony.joseph@weizmann.ac.il</Email>
</Contact>
</Author>
<Author AffiliationIDS="Aff2">
<AuthorName DisplayOrder="Western">
<GivenName>Doron</GivenName>
<FamilyName>Shafrir</FamilyName>
</AuthorName>
<Contact>
<Email>doron.abc@gmail.com</Email>
</Contact>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Donald Frey Professional Chair, Department of Mathematics</OrgDivision>
<OrgName>Weizmann Institute of Science</OrgName>
<OrgAddress>
<City>Rehovot</City>
<Postcode>76100</Postcode>
<Country Code="IL">Israel</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgDivision>Department of Mathematics</OrgDivision>
<OrgName>Hebrew University</OrgName>
<OrgAddress>
<Street>Givat Ram</Street>
<City>Jerusalem</City>
<Postcode>91904</Postcode>
<Country Code="IL">Israel</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>Let
<InlineEquation ID="IEq1">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq1.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
be a finite-dimensional Lie algebra and
<InlineEquation ID="IEq2">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq2.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ Y\left( \mathfrak{a} \right) $$</EquationSource>
</InlineEquation>
the
<InlineEquation ID="IEq3">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq3.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
invariant subalgebra of its symmetric algebra
<InlineEquation ID="IEq4">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq4.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ S\left( \mathfrak{a} \right) $$</EquationSource>
</InlineEquation>
under adjoint action. Recently there has been considerable interest in studying situations when
<InlineEquation ID="IEq5">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq5.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ Y\left( \mathfrak{a} \right) $$</EquationSource>
</InlineEquation>
may be polynomial on index
<InlineEquation ID="IEq6">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq6.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
generators, for example if
<InlineEquation ID="IEq100">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq100.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
is a biparabolic or a centralizer
<InlineEquation ID="IEq7">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq7.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ {\mathfrak{g}^x} $$</EquationSource>
</InlineEquation>
in a semisimple Lie algebra
<InlineEquation ID="IEq8">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq8.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{g} $$</EquationSource>
</InlineEquation>
.</Para>
<Para>Here a sum rule of Ooms and Van den Bergh on the degrees
<Emphasis Type="Italic">d</Emphasis>
<Subscript>
<Emphasis Type="Italic">i</Emphasis>
</Subscript>
of the generators is extended to the case when
<InlineEquation ID="IEq9">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq9.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
is unimodular and the fundamental semi-invariant
<InlineEquation ID="IEq10">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq10.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ {p_\mathfrak{a}} $$</EquationSource>
</InlineEquation>
of
<InlineEquation ID="IEq11">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq11.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
is an invariant. It is noted that these last two conditions always hold for a centralizer
<InlineEquation ID="IEq12">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq12.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ {\mathfrak{g}^x} $$</EquationSource>
</InlineEquation>
and moreover that one has GKdim
<InlineEquation ID="IEq13">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq13.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ Y\left( {{\mathfrak{g}^x}} \right) $$</EquationSource>
</InlineEquation>
= index
<InlineEquation ID="IEq14">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq14.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ {\mathfrak{g}^x} $$</EquationSource>
</InlineEquation>
, even though
<InlineEquation ID="IEq15">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq15.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ S\left( {{\mathfrak{g}^x}} \right) $$</EquationSource>
</InlineEquation>
may admit proper semi-invariants.</Para>
<Para>Applications are given to the notion of an adapted pair (
<Emphasis Type="Italic">h</Emphasis>
, η) for
<InlineEquation ID="IEq16">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq16.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
. Under the above conditions it is shown that the set of eigenvalues {
<Emphasis Type="Italic">m</Emphasis>
<Subscript>
<Emphasis Type="Italic">i</Emphasis>
</Subscript>
} of -ad
<Emphasis Type="Italic">h</Emphasis>
on
<InlineEquation ID="IEq17">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq17.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ {\mathfrak{a}^\eta } $$</EquationSource>
</InlineEquation>
must equal {(
<Emphasis Type="Italic">d</Emphasis>
<Subscript>
<Emphasis Type="Italic">i</Emphasis>
</Subscript>
- 1)}. This gives rise to a condition under which
<InlineEquation ID="IEq18">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq18.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ Y\left( \mathfrak{a} \right) $$</EquationSource>
</InlineEquation>
cannot be polynomial on index
<InlineEquation ID="IEq101">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq101.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ \mathfrak{a} $$</EquationSource>
</InlineEquation>
generators.</Para>
<Para>Finally the theorem of Bolsinov is extended to the case when
<InlineEquation ID="IEq19">
<InlineMediaObject>
<ImageObject FileRef="31_2010_9113_Article_IEq19.gif" Format="GIF" Color="BlackWhite" Type="Linedraw" Rendition="HTML"></ImageObject>
</InlineMediaObject>
<EquationSource Format="TEX">$$ {p_\mathfrak{a}} $$</EquationSource>
</InlineEquation>
is nonscalar.</Para>
</Abstract>
<ArticleNote Type="Dedication">
<SimplePara>Dedicated to Vladimir Morozov on the 100th anniversary of his birthday</SimplePara>
</ArticleNote>
<ArticleNote Type="Misc">
<SimplePara>Supported in part by Minerva grant, no. 8596/1.</SimplePara>
</ArticleNote>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Polynomiality of invariants, unimodularity and adapted pairs</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Polynomiality of invariants, unimodularity and adapted pairs</title>
</titleInfo>
<name type="personal" displayLabel="corresp">
<namePart type="given">Anthony</namePart>
<namePart type="family">Joseph</namePart>
<affiliation>Donald Frey Professional Chair, Department of Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel</affiliation>
<affiliation>E-mail: anthony.joseph@weizmann.ac.il</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Doron</namePart>
<namePart type="family">Shafrir</namePart>
<affiliation>Department of Mathematics, Hebrew University, Givat Ram, 91904, Jerusalem, Israel</affiliation>
<affiliation>E-mail: doron.abc@gmail.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>SP Birkhäuser Verlag Boston</publisher>
<place>
<placeTerm type="text">Boston</placeTerm>
</place>
<dateCreated encoding="w3cdtf">2010-01-12</dateCreated>
<dateIssued encoding="w3cdtf">2010-12-01</dateIssued>
<dateIssued encoding="w3cdtf">2010</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: Let $$ \mathfrak{a} $$ be a finite-dimensional Lie algebra and $$ Y\left( \mathfrak{a} \right) $$ the $$ \mathfrak{a} $$ invariant subalgebra of its symmetric algebra $$ S\left( \mathfrak{a} \right) $$ under adjoint action. Recently there has been considerable interest in studying situations when $$ Y\left( \mathfrak{a} \right) $$ may be polynomial on index $$ \mathfrak{a} $$ generators, for example if $$ \mathfrak{a} $$ is a biparabolic or a centralizer $$ {\mathfrak{g}^x} $$ in a semisimple Lie algebra $$ \mathfrak{g} $$. Here a sum rule of Ooms and Van den Bergh on the degrees d i of the generators is extended to the case when $$ \mathfrak{a} $$ is unimodular and the fundamental semi-invariant $$ {p_\mathfrak{a}} $$ of $$ \mathfrak{a} $$ is an invariant. It is noted that these last two conditions always hold for a centralizer $$ {\mathfrak{g}^x} $$ and moreover that one has GKdim $$ Y\left( {{\mathfrak{g}^x}} \right) $$ = index $$ {\mathfrak{g}^x} $$, even though $$ S\left( {{\mathfrak{g}^x}} \right) $$ may admit proper semi-invariants. Applications are given to the notion of an adapted pair (h, η) for $$ \mathfrak{a} $$. Under the above conditions it is shown that the set of eigenvalues {m i} of -ad h on $$ {\mathfrak{a}^\eta } $$ must equal {(d i - 1)}. This gives rise to a condition under which $$ Y\left( \mathfrak{a} \right) $$ cannot be polynomial on index $$ \mathfrak{a} $$ generators. Finally the theorem of Bolsinov is extended to the case when $$ {p_\mathfrak{a}} $$ is nonscalar.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Transformation Groups</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Transformation Groups</title>
</titleInfo>
<genre type="journal" displayLabel="Non Standard Archive Journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">2010-12-17</dateIssued>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<subject>
<genre>Mathematics</genre>
<topic>Algebra</topic>
<topic>Topological Groups, Lie Groups</topic>
</subject>
<identifier type="ISSN">1083-4362</identifier>
<identifier type="eISSN">1531-586X</identifier>
<identifier type="JournalID">31</identifier>
<identifier type="IssueArticleCount">13</identifier>
<identifier type="VolumeIssueCount">4</identifier>
<part>
<date>2010</date>
<detail type="volume">
<number>15</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>851</start>
<end>882</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer Science+Business Media, LLC, 2010</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D</identifier>
<identifier type="ark">ark:/67375/VQC-1C6M7C7S-7</identifier>
<identifier type="DOI">10.1007/s00031-010-9113-6</identifier>
<identifier type="ArticleID">9113</identifier>
<identifier type="ArticleID">s00031-010-9113-6</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer Science+Business Media, LLC, 2010</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Springer Science+Business Media, LLC, 2010</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Mathematiques/explor/BourbakiV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000586 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000586 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Mathematiques
   |area=    BourbakiV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1B8DBEFFE1EAC7A2EDF4CEDAE8DC11BCECDB299D
   |texte=   Polynomiality of invariants, unimodularity and adapted pairs
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Thu Jul 5 10:00:31 2018. Site generation: Sat Nov 19 17:42:07 2022