Collection ALS/1992/Forthoffer réseau de neurones
Société des sciences naturelles de Strasbourg //Société des sciences de Nancy // Académie lorraine des sciences |
Apport du réseau de neurones pour une détection de contours par transformée en ondelettes
|
Sommaire
- 1 Résumé
- 2 Apport du réseau de neurones pour une détection de contours par transformée en ondelettes
- 3 Suite en mode image
- 4 Fin en mode hypertexte
- 5 Voir aussi
Résumé
[65]
La méthode présentée dans cet article, constitue un nouvel outil d'extraction des
contours d'une image en niveaux de gris, par coopération de techniques :
décomposition en ondelettes et réseaux neuromimétiques.
La première partie est consacrée aux rappels nécessaires quant au formalisme de la décomposition en ondelettes, ainsi que ses principales propriétés.
La phase délicate de l'algorithme réside dans la recomposition optimale des différentes résolutions, afin d'obtenir des contours fins et sans bruit. Cette tâche est avantageusement confiée à un réseau de neurones, objet de la deuxième partie.
L'attrait majeur de cette nouvelle technique, est sa capacité à traiter correctement des images aux caractéristiques très différentes, sans avoir à modifier de paramètres
Abstract
The first part recalls the necessary background on mono and bidimensional wavelet decomposition and their main properties.
The difficult phase of the algorithm lies in the optimal recomposition of different resolutions, in the aim to obtain thin and noiseless edges. This work is given to a neural network which constitutes the object of the second part
The main interest of this new method is to give good results with images whose caracteristics are completly different, without to modify any parameters.
Apport du réseau de neurones pour une détection de contours par transformée en ondelettes
Introduction
La segmentation d'images est une étape pivot entre les phases d'amélioration- restauration et celle de décision. C'est à ce niveau qu'est effectuée une détection, le plus souvent non réversible, de l'information utile dans une image.
Il existe principalement deux approches pour segmenter une image : l'approche par les contours et l'approche par les régions qui lui est duale. Nous nous intéressons ici à l'approche par la détection de contours [10].
Il s'avère que, tenir compte de facteurs perturbateurs tels que le flou ou le bruit apportés lors des phases d'acquisition ou de prises de vues, améliore sensiblement les performances de la détection [4].
La transformée en ondelettes est une analyse multi-échelle permettant une meilleure interprétation du signal et donc des perturbations [3].
La phase de détection de contours réside dans l'extraction des discontinuités de l'image, depuis les différentes échelles. Une solution consiste à combiner les différentes résolutions du signal image, en utilisant un réseau de neurones [12]. Celui-ci est chargé de déterminer une loi de combinaison optimale, face à un critère d'erreur quadratique, calculé pendant la phase d'apprentissage, à l'aide d'une référence déterminée par un expert.
Cette approche originale permet d'appréhender automatiquement, par le biais de l'apprentissage neuronal, le caractère multirésolution de la décomposition en ondelettes.
La transformée en ondelettes
Définitions
Les ondelettes sont des fonctions déterminées par dilatations et translations, à partir d'une fonction appelée ondelette mère. Cette fonction, introduite par Morlet et Grossman [5], permet l'analyse d'un signal.
- (1) avec a>0,
où a est le facteur d'échelle, b le facteur de translation et t le temps.
Pour une analyse temps-échelle efficace, doit être bien localisée en temps et en fréquence. En outre, l'ondelette est assimilée à un filtre passe-haut :
- (2)
Parallèlement à une décomposition en série de Fourier, la transformée en
ondelettes permet de synthétiser un signal en tant que somme de plusieurs
[68]
ondelettes de facteurs d'échelles variables. Y. Meyer [9], a montré que les
fonctions constituent une base orthogonale de pour et .
- (3)
Suite en mode image
Mise en oeuvre algorithmique sur des signaux discrets
Détection de contours par analyse multi-résolution
Transformée en ondelettes sans sous-échantillonnage
Choix de la base de détection
Algorithme bidimentionnel de décomposition en ondelettes
Détection de contours 2D
Coopération "ondelettes-réseau de neurones"
Principe
L'algorithme de rétropropagation
Mise en oeuvre
Expérimentation
Interprétation
Conclusion et perspectves
Illustrations
Fin en mode hypertexte
Bibliographie
[1] ↑ E. DAVALO et P NAIM, "Des réseaux de neurones" - PARIS, EYROLLES, 1990.
[2] D.J. EVANS & al, - "Searching sets of properties with neural networks" - Parallel Computing, №.16,1990, p. 279-285. [3] J.C. FAUVEAU, - "Analyse multi-résolution par ondelettes non orthogonales et bancs de filtres numériques" - Thèse de Doctorat, spécialité informatique, Université de Paris Sud, 1990. [4] M. FORTHOFFER, - "Détection de contours par transformée en ondelettes et réseaux de neurones" - Thèse de Doctorat, spécialité automatique, Université de Nancy 1,1991. [5] A. GROSSMANN & J. MORLET, - "Decomposition of Hardy functions into square integrable wavelets of constant shape" - SIAM J. Math., vol 15, 1984, p. 723-736. [6] S.G. MALLAT, - "A Theory for Multiresolution Signal Decomposition : The Wavelet Representation" - IEEE Trans, on Pattern Analysis and Machine Intelligence, n°7, July 1989, vol. 11. [7] S.G. MALLAT, - "Multiresolution representations and wavelets" - Thèse, GRASP Lab, Dept. of computer and information science, Univ of Pennsylvania, 1988. [8] P. MATHIEU & al, - "Compression d'images par transformée en ondelette et quantification vectorielle" - Traitement du Signal, Vol 7, n°2,1990. [9] Y. MEYER, - "Principe d'incertitude, bases hilbertiennnes et algèbre d'opérateurs" - Séminaire Bourbaki n°662,1985-86.
[10] ↑ O. MONGA,, "segmentation d'images : où en sommes nous ?" - rapport de recherche INRIA-Rocquencourt, №1216, support de cours pour le congrès PIXIM 89,1990.
[II] M J. SMITH and D.P. BARNWELL, Exact reconstruction for tree-structured subband coders. IEEE Trans, on ASSP 34,1986, p.434-441. [12] P. J. WERBOS - "Backpropagation through time: what it does and how to do it" - Proceedings of the IEEE, № 10, October 1990, vol. 78.
Voir aussi
- Dans le réseau Wicri :
La page de référence « Collection ALS/1992/Forthoffer réseau de neurones » est sur le wiki Wicri/Académies Grand Est.