Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA

Identifieur interne : 001270 ( Istex/Corpus ); précédent : 001269; suivant : 001271

Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA

Auteurs : Mark E. Grismer

Source :

RBID : ISTEX:D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899

Abstract

Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield, Sy, and pore‐size distribution index, λ), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger Sy and λ values for all Sy >10%, lag times progressively increase; however, at Sy <10%, lag times decrease substantially suggesting that particular combinations of Sy and λ values that may be associated with similarly textured materials can result in the prediction of different lag times for Sy approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/hyp.9249

Links to Exploration step

ISTEX:D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
<author>
<name sortKey="Grismer, Mark E" sort="Grismer, Mark E" uniqKey="Grismer M" first="Mark E." last="Grismer">Mark E. Grismer</name>
<affiliation>
<mods:affiliation>Hydrologic Sciences, UC Davis, 1 Shields Ave., CA, 95616, Davis, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: megrismer@ucdavis.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/hyp.9249</idno>
<idno type="url">https://api.istex.fr/document/D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001270</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001270</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
<author>
<name sortKey="Grismer, Mark E" sort="Grismer, Mark E" uniqKey="Grismer M" first="Mark E." last="Grismer">Mark E. Grismer</name>
<affiliation>
<mods:affiliation>Hydrologic Sciences, UC Davis, 1 Shields Ave., CA, 95616, Davis, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: megrismer@ucdavis.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="ISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-01-30">2013-01-30</date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="378">378</biblScope>
<biblScope unit="page" to="393">393</biblScope>
</imprint>
<idno type="ISSN">0885-6087</idno>
</series>
<idno type="istex">D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899</idno>
<idno type="DOI">10.1002/hyp.9249</idno>
<idno type="ArticleID">HYP9249</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-6087</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield, Sy, and pore‐size distribution index, λ), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger Sy and λ values for all Sy >10%, lag times progressively increase; however, at Sy <10%, lag times decrease substantially suggesting that particular combinations of Sy and λ values that may be associated with similarly textured materials can result in the prediction of different lag times for Sy approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Mark E. Grismer</name>
<affiliations>
<json:string>Hydrologic Sciences, UC Davis, 1 Shields Ave., CA, 95616, Davis, USA</json:string>
<json:string>E-mail: megrismer@ucdavis.edu</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>unsaturated flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soil water retention</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>water balance</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>deep percolation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>evapotranspiration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>depth to groundwater</value>
</json:item>
</subject>
<articleId>
<json:string>HYP9249</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield, Sy, and pore‐size distribution index, λ), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger Sy and λ values for all Sy >10%, lag times progressively increase; however, at Sy >10%, lag times decrease substantially suggesting that particular combinations of Sy and λ values that may be associated with similarly textured materials can result in the prediction of different lag times for Sy approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595.276 x 841.89 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1829</abstractCharCount>
<pdfWordCount>10230</pdfWordCount>
<pdfCharCount>64537</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>264</abstractWordCount>
</qualityIndicators>
<title>Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>27</volume>
<publisherId>
<json:string>HYP</json:string>
</publisherId>
<pages>
<total>16</total>
<last>393</last>
<first>378</first>
</pages>
<issn>
<json:string>0885-6087</json:string>
</issn>
<issue>3</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1099-1085</json:string>
</eissn>
<title>Hydrological Processes</title>
<doi>
<json:string>10.1002/(ISSN)1099-1085</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/hyp.9249</json:string>
</doi>
<id>D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899</id>
<score>0.040223107</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright © 2013 John Wiley & Sons, Ltd.Copyright © 2012 John Wiley & Sons, Ltd.</p>
</availability>
<date>2012-02-14</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
<author xml:id="author-1">
<persName>
<forename type="first">Mark E.</forename>
<surname>Grismer</surname>
</persName>
<email>megrismer@ucdavis.edu</email>
<affiliation>Hydrologic Sciences, UC Davis, 1 Shields Ave., CA, 95616, Davis, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="pISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<idno type="DOI">10.1002/(ISSN)1099-1085</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-01-30"></date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="378">378</biblScope>
<biblScope unit="page" to="393">393</biblScope>
</imprint>
</monogr>
<idno type="istex">D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899</idno>
<idno type="DOI">10.1002/hyp.9249</idno>
<idno type="ArticleID">HYP9249</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012-02-14</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield, Sy, and pore‐size distribution index, λ), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger Sy and λ values for all Sy >10%, lag times progressively increase; however, at Sy <10%, lag times decrease substantially suggesting that particular combinations of Sy and λ values that may be associated with similarly textured materials can result in the prediction of different lag times for Sy approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>unsaturated flow</term>
</item>
<item>
<term>soil water retention</term>
</item>
<item>
<term>water balance</term>
</item>
<item>
<term>deep percolation</term>
</item>
<item>
<term>evapotranspiration</term>
</item>
<item>
<term>depth to groundwater</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2011-08-12">Received</change>
<change when="2012-01-13">Registration</change>
<change when="2012-02-14">Created</change>
<change when="2013-01-30">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="hyp9249">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1099-1085</doi>
<issn type="print">0885-6087</issn>
<issn type="electronic">1099-1085</issn>
<idGroup>
<id type="product" value="HYP"></id>
</idGroup>
<titleGroup>
<title type="main" sort="HYDROLOGICAL PROCESSES">Hydrological Processes</title>
<title type="short">Hydrol. Process.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi>10.1002/hyp.v27.3</doi>
<copyright ownership="publisher">Copyright © 2013 John Wiley & Sons, Ltd.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="27">27</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2013-01-30">30 January 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="80" type="article" status="forIssue">
<doi>10.1002/hyp.9249</doi>
<idGroup>
<id type="unit" value="HYP9249"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-08-12"></event>
<event type="manuscriptAccepted" date="2012-01-13"></event>
<event type="xmlCreated" agent="SPi Global" date="2012-02-14"></event>
<event type="publishedOnlineAccepted" date="2012-02-13"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2012-03-19"></event>
<event type="firstOnline" date="2012-03-19"></event>
<event type="publishedOnlineFinalForm" date="2013-01-10"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-02"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">378</numbering>
<numbering type="pageLast">393</numbering>
</numberingGroup>
<correspondenceTo>Mark E. Grismer, Hydrologic Sciences, UC Davis, 1 Shields Ave., Davis, CA 95616, USA. E‐mail:
<email>megrismer@ucdavis.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HYP.HYP9249.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
<title type="short">ESTIMATING AGRICULTURAL DEEP DRAINAGE LAG TIMES TO GROUNDWATER</title>
<title type="shortAuthors">M. E. GRISMER</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="hyp9249-cr-0001" affiliationRef="#hyp9249-aff-0001" corresponding="yes">
<personName>
<givenNames>Mark E.</givenNames>
<familyName>Grismer</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="hyp9249-aff-0001">
<orgName>Hydrologic Sciences, UC Davis</orgName>
<address>
<street>1 Shields Ave.</street>
<city>Davis</city>
<countryPart>CA</countryPart>
<postCode>95616</postCode>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="hyp9249-kwd-0001">unsaturated flow</keyword>
<keyword xml:id="hyp9249-kwd-0002">soil water retention</keyword>
<keyword xml:id="hyp9249-kwd-0003">water balance</keyword>
<keyword xml:id="hyp9249-kwd-0004">deep percolation</keyword>
<keyword xml:id="hyp9249-kwd-0005">evapotranspiration</keyword>
<keyword xml:id="hyp9249-kwd-0006">depth to groundwater</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<title type="main">Abstract</title>
<p>Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield,
<i>S</i>
<sub>y</sub>
, and pore‐size distribution index,
<i>λ</i>
), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger
<i>S</i>
<sub>y</sub>
and
<i>λ</i>
values for all
<i>S</i>
<sub>y</sub>
>10%, lag times progressively increase; however, at
<i>S</i>
<sub>y</sub>
<10%, lag times decrease substantially suggesting that particular combinations of
<i>S</i>
<sub>y</sub>
and
<i>λ</i>
values that may be associated with similarly textured materials can result in the prediction of different lag times for
<i>S</i>
<sub>y</sub>
approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>ESTIMATING AGRICULTURAL DEEP DRAINAGE LAG TIMES TO GROUNDWATER</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mark E.</namePart>
<namePart type="family">Grismer</namePart>
<affiliation>Hydrologic Sciences, UC Davis, 1 Shields Ave., CA, 95616, Davis, USA</affiliation>
<affiliation>E-mail: megrismer@ucdavis.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-01-30</dateIssued>
<dateCreated encoding="w3cdtf">2012-02-14</dateCreated>
<dateCaptured encoding="w3cdtf">2011-08-12</dateCaptured>
<dateValid encoding="w3cdtf">2012-01-13</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Estimates of groundwater volumes available in semiarid regions that rely on water balance calculations require the determination of both surface to groundwater lag times and volumes from irrigation or rainfall initiated recharge. Subsurface geologic material hydraulic properties (e.g. hydraulic conductivities, water retention functions) necessary for unsaturated flow modelling are rarely available as are the instrumented field tests that might determine such lag times. Here we develop a simple two‐parameter (specific yield, Sy, and pore‐size distribution index, λ), one‐dimensional unsaturated flow model from simplifications of the Richards equation (using the Brooks‐Corey relationships) to determine lag times from agricultural deep drainage associated with the irrigation of alfalfa hay and various row crops in the Antelope Valley of California, USA. Model‐predicted lag times to depths of 85 m bgs (below ground surface) were similar to that measured in a 2‐year ponded recharge field trial, slightly overestimating that measured by approximately 15% (0.51 vs 0.44 years). Lag time estimates were most sensitive to estimated deep percolation rates and roughly equally sensitive to the model hydraulic parameters. Generally, as subsurface material textures coarsen towards larger Sy and λ values for all Sy >10%, lag times progressively increase; however, at Sy <10%, lag times decrease substantially suggesting that particular combinations of Sy and λ values that may be associated with similarly textured materials can result in the prediction of different lag times for Sy approximately 10%. Overall, lag times of 1–3 years to a depth of 69 m bgs were estimated from deep drainage of agricultural irrigation across a variety of irrigation schedules and subsurface materials. Copyright © 2012 John Wiley & Sons, Ltd.</abstract>
<subject>
<genre>keywords</genre>
<topic>unsaturated flow</topic>
<topic>soil water retention</topic>
<topic>water balance</topic>
<topic>deep percolation</topic>
<topic>evapotranspiration</topic>
<topic>depth to groundwater</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Hydrological Processes</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hydrol. Process.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0885-6087</identifier>
<identifier type="eISSN">1099-1085</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1085</identifier>
<identifier type="PublisherID">HYP</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>378</start>
<end>393</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899</identifier>
<identifier type="DOI">10.1002/hyp.9249</identifier>
<identifier type="ArticleID">HYP9249</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2013 John Wiley & Sons, Ltd.Copyright © 2012 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001270 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001270 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D04708EE12810EF4CFEA9AC6CD4CB1B997BFC899
   |texte=   Estimating agricultural deep drainage lag times to groundwater: application to Antelope Valley, California, USA
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024