Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States

Identifieur interne : 001246 ( Istex/Corpus ); précédent : 001245; suivant : 001247

Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States

Auteurs : Matthew Garcia ; Christa D. Peters-Lidard ; David C. Goodrich

Source :

RBID : ISTEX:1D0591A2956C432D31911A314CE9BFCEE3049B81

Abstract

Inaccuracy in spatially distributed precipitation fields can contribute significantly to the uncertainty of hydrological states and fluxes estimated from land surface models. This paper examines the results of selected interpolation methods for both convective and mixed/stratiform events that occurred during the North American monsoon season over a dense gauge network at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed in the southwestern United States. The spatial coefficient of variation for the precipitation field is employed as an indicator of event morphology, and a gauge clustering factor CF is formulated as a new, scale‐independent measure of network organization. We consider that CF < 0 (a more distributed gauge network) will produce interpolation errors by reduced resolution of the precipitation field and that CF > 0 (clustering in the gauge network) will produce errors because of reduced areal representation of the precipitation field. Spatial interpolation is performed using both inverse‐distance‐weighted (IDW) and multiquadric‐biharmonic (MQB) methods. We employ ensembles of randomly selected network subsets for the statistical evaluation of interpolation errors in comparison with the observed precipitation. The magnitude of interpolation errors and differences in accuracy between interpolation methods depend on both the density and the geometrical organization of the gauge network. Generally, MQB methods outperform IDW methods in terms of interpolation accuracy under all conditions, but it is found that the order of the IDW method is important to the results and may, under some conditions, be just as accurate as the MQB method. In almost all results it is demonstrated that the inverse‐distance‐squared method for spatial interpolation, commonly employed in operational analyses and for engineering assessments, is inferior to the ID‐cubed method, which is also more computationally efficient than the MQB method in studies of large networks.

Url:
DOI: 10.1029/2006WR005788

Links to Exploration step

ISTEX:1D0591A2956C432D31911A314CE9BFCEE3049B81

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
<author>
<name sortKey="Garcia, Matthew" sort="Garcia, Matthew" uniqKey="Garcia M" first="Matthew" last="Garcia">Matthew Garcia</name>
<affiliation>
<mods:affiliation>Goddard Earth Science and Technology Center, University of Maryland Baltimore County, Baltimore, Maryland, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: matthew.garcia@nasa.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peters Idard, Christa D" sort="Peters Idard, Christa D" uniqKey="Peters Idard C" first="Christa D." last="Peters-Lidard">Christa D. Peters-Lidard</name>
<affiliation>
<mods:affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goodrich, David C" sort="Goodrich, David C" uniqKey="Goodrich D" first="David C." last="Goodrich">David C. Goodrich</name>
<affiliation>
<mods:affiliation>Southwest Watershed Research Center, Agricultural Research Service, U.S. Department of Agriculture, Arizona, Tucson, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1D0591A2956C432D31911A314CE9BFCEE3049B81</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1029/2006WR005788</idno>
<idno type="url">https://api.istex.fr/document/1D0591A2956C432D31911A314CE9BFCEE3049B81/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001246</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001246</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
<author>
<name sortKey="Garcia, Matthew" sort="Garcia, Matthew" uniqKey="Garcia M" first="Matthew" last="Garcia">Matthew Garcia</name>
<affiliation>
<mods:affiliation>Goddard Earth Science and Technology Center, University of Maryland Baltimore County, Baltimore, Maryland, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: matthew.garcia@nasa.gov</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peters Idard, Christa D" sort="Peters Idard, Christa D" uniqKey="Peters Idard C" first="Christa D." last="Peters-Lidard">Christa D. Peters-Lidard</name>
<affiliation>
<mods:affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goodrich, David C" sort="Goodrich, David C" uniqKey="Goodrich D" first="David C." last="Goodrich">David C. Goodrich</name>
<affiliation>
<mods:affiliation>Southwest Watershed Research Center, Agricultural Research Service, U.S. Department of Agriculture, Arizona, Tucson, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="ISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2008-05">2008-05</date>
<biblScope unit="volume">44</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0043-1397</idno>
</series>
<idno type="istex">1D0591A2956C432D31911A314CE9BFCEE3049B81</idno>
<idno type="DOI">10.1029/2006WR005788</idno>
<idno type="ArticleID">2006WR005788</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0043-1397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Inaccuracy in spatially distributed precipitation fields can contribute significantly to the uncertainty of hydrological states and fluxes estimated from land surface models. This paper examines the results of selected interpolation methods for both convective and mixed/stratiform events that occurred during the North American monsoon season over a dense gauge network at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed in the southwestern United States. The spatial coefficient of variation for the precipitation field is employed as an indicator of event morphology, and a gauge clustering factor CF is formulated as a new, scale‐independent measure of network organization. We consider that CF < 0 (a more distributed gauge network) will produce interpolation errors by reduced resolution of the precipitation field and that CF > 0 (clustering in the gauge network) will produce errors because of reduced areal representation of the precipitation field. Spatial interpolation is performed using both inverse‐distance‐weighted (IDW) and multiquadric‐biharmonic (MQB) methods. We employ ensembles of randomly selected network subsets for the statistical evaluation of interpolation errors in comparison with the observed precipitation. The magnitude of interpolation errors and differences in accuracy between interpolation methods depend on both the density and the geometrical organization of the gauge network. Generally, MQB methods outperform IDW methods in terms of interpolation accuracy under all conditions, but it is found that the order of the IDW method is important to the results and may, under some conditions, be just as accurate as the MQB method. In almost all results it is demonstrated that the inverse‐distance‐squared method for spatial interpolation, commonly employed in operational analyses and for engineering assessments, is inferior to the ID‐cubed method, which is also more computationally efficient than the MQB method in studies of large networks.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Matthew Garcia</name>
<affiliations>
<json:string>Goddard Earth Science and Technology Center, University of Maryland Baltimore County, Baltimore, Maryland, USA</json:string>
<json:string>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</json:string>
<json:string>E-mail: matthew.garcia@nasa.gov</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christa D. Peters‐Lidard</name>
<affiliations>
<json:string>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>David C. Goodrich</name>
<affiliations>
<json:string>Southwest Watershed Research Center, Agricultural Research Service, U.S. Department of Agriculture, Arizona, Tucson, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>North American monsoon</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spatial interpolation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>inverse‐distance</value>
</json:item>
</subject>
<articleId>
<json:string>2006WR005788</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Inaccuracy in spatially distributed precipitation fields can contribute significantly to the uncertainty of hydrological states and fluxes estimated from land surface models. This paper examines the results of selected interpolation methods for both convective and mixed/stratiform events that occurred during the North American monsoon season over a dense gauge network at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed in the southwestern United States. The spatial coefficient of variation for the precipitation field is employed as an indicator of event morphology, and a gauge clustering factor CF is formulated as a new, scale‐independent measure of network organization. We consider that CF > 0 (a more distributed gauge network) will produce interpolation errors by reduced resolution of the precipitation field and that CF > 0 (clustering in the gauge network) will produce errors because of reduced areal representation of the precipitation field. Spatial interpolation is performed using both inverse‐distance‐weighted (IDW) and multiquadric‐biharmonic (MQB) methods. We employ ensembles of randomly selected network subsets for the statistical evaluation of interpolation errors in comparison with the observed precipitation. The magnitude of interpolation errors and differences in accuracy between interpolation methods depend on both the density and the geometrical organization of the gauge network. Generally, MQB methods outperform IDW methods in terms of interpolation accuracy under all conditions, but it is found that the order of the IDW method is important to the results and may, under some conditions, be just as accurate as the MQB method. In almost all results it is demonstrated that the inverse‐distance‐squared method for spatial interpolation, commonly employed in operational analyses and for engineering assessments, is inferior to the ID‐cubed method, which is also more computationally efficient than the MQB method in studies of large networks.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2035</abstractCharCount>
<pdfWordCount>8570</pdfWordCount>
<pdfCharCount>52358</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>290</abstractWordCount>
</qualityIndicators>
<title>Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>44</volume>
<publisherId>
<json:string>WRCR</json:string>
</publisherId>
<pages>
<total>14</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0043-1397</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Fifty Years of Research and Data Collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed</value>
</json:item>
<json:item>
<value>COMPUTATIONAL GEOPHYSICS</value>
</json:item>
<json:item>
<value>Computational Geophysics</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Precipitation</value>
</json:item>
<json:item>
<value>Monitoring networks</value>
</json:item>
<json:item>
<value>Hydrometeorology</value>
</json:item>
<json:item>
<value>INFORMATICS</value>
</json:item>
<json:item>
<value>Spatial analysis and representation</value>
</json:item>
<json:item>
<value>MATHEMATICAL GEOPHYSICS</value>
</json:item>
<json:item>
<value>Spatial analysis</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Precipitation</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Spatial modeling</value>
</json:item>
<json:item>
<value>Regular Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-7973</json:string>
</eissn>
<title>Water Resources Research</title>
<doi>
<json:string>10.1002/(ISSN)1944-7973</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
<json:string>limnology</json:string>
<json:string>environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1029/2006WR005788</json:string>
</doi>
<id>1D0591A2956C432D31911A314CE9BFCEE3049B81</id>
<score>0.040223107</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1D0591A2956C432D31911A314CE9BFCEE3049B81/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1D0591A2956C432D31911A314CE9BFCEE3049B81/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1D0591A2956C432D31911A314CE9BFCEE3049B81/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2008 by the American Geophysical Union.</p>
</availability>
<date>2008</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
<author xml:id="author-1">
<persName>
<forename type="first">Matthew</forename>
<surname>Garcia</surname>
</persName>
<email>matthew.garcia@nasa.gov</email>
<affiliation>Goddard Earth Science and Technology Center, University of Maryland Baltimore County, Baltimore, Maryland, USA</affiliation>
<affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Christa D.</forename>
<surname>Peters‐Lidard</surname>
</persName>
<affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">David C.</forename>
<surname>Goodrich</surname>
</persName>
<affiliation>Southwest Watershed Research Center, Agricultural Research Service, U.S. Department of Agriculture, Arizona, Tucson, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="pISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<idno type="DOI">10.1002/(ISSN)1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2008-05"></date>
<biblScope unit="volume">44</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">1D0591A2956C432D31911A314CE9BFCEE3049B81</idno>
<idno type="DOI">10.1029/2006WR005788</idno>
<idno type="ArticleID">2006WR005788</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Inaccuracy in spatially distributed precipitation fields can contribute significantly to the uncertainty of hydrological states and fluxes estimated from land surface models. This paper examines the results of selected interpolation methods for both convective and mixed/stratiform events that occurred during the North American monsoon season over a dense gauge network at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed in the southwestern United States. The spatial coefficient of variation for the precipitation field is employed as an indicator of event morphology, and a gauge clustering factor CF is formulated as a new, scale‐independent measure of network organization. We consider that CF < 0 (a more distributed gauge network) will produce interpolation errors by reduced resolution of the precipitation field and that CF > 0 (clustering in the gauge network) will produce errors because of reduced areal representation of the precipitation field. Spatial interpolation is performed using both inverse‐distance‐weighted (IDW) and multiquadric‐biharmonic (MQB) methods. We employ ensembles of randomly selected network subsets for the statistical evaluation of interpolation errors in comparison with the observed precipitation. The magnitude of interpolation errors and differences in accuracy between interpolation methods depend on both the density and the geometrical organization of the gauge network. Generally, MQB methods outperform IDW methods in terms of interpolation accuracy under all conditions, but it is found that the order of the IDW method is important to the results and may, under some conditions, be just as accurate as the MQB method. In almost all results it is demonstrated that the inverse‐distance‐squared method for spatial interpolation, commonly employed in operational analyses and for engineering assessments, is inferior to the ID‐cubed method, which is also more computationally efficient than the MQB method in studies of large networks.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>North American monsoon</term>
</item>
<item>
<term>spatial interpolation</term>
</item>
<item>
<term>inverse‐distance</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Fifty Years of Research and Data Collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed</term>
</item>
<item>
<term>COMPUTATIONAL GEOPHYSICS</term>
</item>
<item>
<term>Computational Geophysics</term>
</item>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Precipitation</term>
</item>
<item>
<term>Monitoring networks</term>
</item>
<item>
<term>Hydrometeorology</term>
</item>
<item>
<term>INFORMATICS</term>
</item>
<item>
<term>Spatial analysis and representation</term>
</item>
<item>
<term>MATHEMATICAL GEOPHYSICS</term>
</item>
<item>
<term>Spatial analysis</term>
</item>
<item>
<term>ATMOSPHERIC PROCESSES</term>
</item>
<item>
<term>Precipitation</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Spatial modeling</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Regular Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-11-30">Received</change>
<change when="2007-09-11">Registration</change>
<change when="2008-05">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1D0591A2956C432D31911A314CE9BFCEE3049B81/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="wrcr11224">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-7973</doi>
<issn type="print">0043-1397</issn>
<issn type="electronic">1944-7973</issn>
<idGroup>
<id type="product" value="WRCR"></id>
<id type="coden" value="WRERAQ"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="WATER RESOURCES RESEARCH">Water Resources Research</title>
<title type="short">Water Resour. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi>10.1002/wrcr.v44.5</doi>
<numberingGroup>
<numbering type="journalVolume" number="44">44</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2008-05">May 2008</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="510" type="article" status="forIssue">
<doi>10.1029/2006WR005788</doi>
<idGroup>
<id type="editorialOffice" value="2006WR005788"></id>
<id type="society" value="W05S13"></id>
<id type="unit" value="WRCR11224"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Regular Article</title>
<title type="tocHeading1">Regular Article</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2008 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2006-11-30"></event>
<event type="manuscriptRevised" date="2007-08-15"></event>
<event type="manuscriptAccepted" date="2007-09-11"></event>
<event type="firstOnline" date="2008-03-15"></event>
<event type="publishedOnlineFinalForm" date="2008-03-15"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-01-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-21"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/specialSection/GULCH1">Fifty Years of Research and Data Collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0500">COMPUTATIONAL GEOPHYSICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0500">Computational Geophysics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1854">Precipitation</subject>
<subject href="http://psi.agu.org/taxonomy5/1848">Monitoring networks</subject>
<subject href="http://psi.agu.org/taxonomy5/1840">Hydrometeorology</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1900">INFORMATICS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/1980">Spatial analysis and representation</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3200">MATHEMATICAL GEOPHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3252">Spatial analysis</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/3354">Precipitation</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4319">Spatial modeling</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="wrcr11224-cit-0000" type="self">
<author>
<familyName>Garcia</familyName>
,
<givenNames>M.</givenNames>
</author>
,
<author>
<givenNames>C. D.</givenNames>
<familyName>Peters‐Lidard</familyName>
</author>
, and
<author>
<givenNames>D. C.</givenNames>
<familyName>Goodrich</familyName>
</author>
(
<pubYear year="2008">2008</pubYear>
),
<articleTitle>Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</articleTitle>
,
<journalTitle>Water Resour. Res.</journalTitle>
,
<vol>44</vol>
, W05S13, doi:
<accessionId ref="info:doi/10.1029/2006WR005788">10.1029/2006WR005788</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:WRCR.WRCR11224.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="1"></count>
</countGroup>
<titleGroup>
<title type="main">Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
<title type="short">MONSOON RAINFALL INTERPOLATION</title>
<title type="shortAuthors">Garcia
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="wrcr11224-cr-0001" affiliationRef="#wrcr11224-aff-0001 #wrcr11224-aff-0002">
<personName>
<givenNames>Matthew</givenNames>
<familyName>Garcia</familyName>
</personName>
<contactDetails>
<email normalForm="matthew.garcia@nasa.gov">matthew.garcia@nasa.gov</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="wrcr11224-cr-0002" affiliationRef="#wrcr11224-aff-0002">
<personName>
<givenNames>Christa D.</givenNames>
<familyName>Peters‐Lidard</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="wrcr11224-cr-0003" affiliationRef="#wrcr11224-aff-0003">
<personName>
<givenNames>David C.</givenNames>
<familyName>Goodrich</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="wrcr11224-aff-0001">
<orgDiv>Goddard Earth Science and Technology Center</orgDiv>
<orgName>University of Maryland Baltimore County</orgName>
<address>
<city>Baltimore</city>
<countryPart>Maryland</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="wrcr11224-aff-0002">
<orgDiv>Hydrological Sciences Branch</orgDiv>
<orgName>NASA Goddard Space Flight Center</orgName>
<address>
<city>Greenbelt</city>
<countryPart>Maryland</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="wrcr11224-aff-0003">
<orgDiv>Southwest Watershed Research Center, Agricultural Research Service</orgDiv>
<orgName>U.S. Department of Agriculture</orgName>
<address>
<city>Tucson</city>
<countryPart>Arizona</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="wrcr11224-kwd-0001">North American monsoon</keyword>
<keyword xml:id="wrcr11224-kwd-0002">spatial interpolation</keyword>
<keyword xml:id="wrcr11224-kwd-0003">inverse‐distance</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:00431397:media:wrcr11224:wrcr11224-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="wrcr11224-para-0001" label="1">Inaccuracy in spatially distributed precipitation fields can contribute significantly to the uncertainty of hydrological states and fluxes estimated from land surface models. This paper examines the results of selected interpolation methods for both convective and mixed/stratiform events that occurred during the North American monsoon season over a dense gauge network at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed in the southwestern United States. The spatial coefficient of variation for the precipitation field is employed as an indicator of event morphology, and a gauge clustering factor
<i>CF</i>
is formulated as a new, scale‐independent measure of network organization. We consider that
<i>CF</i>
< 0 (a more distributed gauge network) will produce interpolation errors by reduced resolution of the precipitation field and that
<i>CF</i>
> 0 (clustering in the gauge network) will produce errors because of reduced areal representation of the precipitation field. Spatial interpolation is performed using both inverse‐distance‐weighted (IDW) and multiquadric‐biharmonic (MQB) methods. We employ ensembles of randomly selected network subsets for the statistical evaluation of interpolation errors in comparison with the observed precipitation. The magnitude of interpolation errors and differences in accuracy between interpolation methods depend on both the density and the geometrical organization of the gauge network. Generally, MQB methods outperform IDW methods in terms of interpolation accuracy under all conditions, but it is found that the order of the IDW method is important to the results and may, under some conditions, be just as accurate as the MQB method. In almost all results it is demonstrated that the inverse‐distance‐squared method for spatial interpolation, commonly employed in operational analyses and for engineering assessments, is inferior to the ID‐cubed method, which is also more computationally efficient than the MQB method in studies of large networks.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>MONSOON RAINFALL INTERPOLATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Garcia</namePart>
<affiliation>Goddard Earth Science and Technology Center, University of Maryland Baltimore County, Baltimore, Maryland, USA</affiliation>
<affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</affiliation>
<affiliation>E-mail: matthew.garcia@nasa.gov</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christa D.</namePart>
<namePart type="family">Peters‐Lidard</namePart>
<affiliation>Hydrological Sciences Branch, NASA Goddard Space Flight Center, Maryland, Greenbelt, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David C.</namePart>
<namePart type="family">Goodrich</namePart>
<affiliation>Southwest Watershed Research Center, Agricultural Research Service, U.S. Department of Agriculture, Arizona, Tucson, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2008-05</dateIssued>
<dateCaptured encoding="w3cdtf">2006-11-30</dateCaptured>
<dateValid encoding="w3cdtf">2007-09-11</dateValid>
<edition>Garcia, M., C. D. Peters‐Lidard, and D. C. Goodrich (2008), Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States, Water Resour. Res., 44, W05S13, doi:10.1029/2006WR005788.</edition>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="tables">1</extent>
</physicalDescription>
<abstract>Inaccuracy in spatially distributed precipitation fields can contribute significantly to the uncertainty of hydrological states and fluxes estimated from land surface models. This paper examines the results of selected interpolation methods for both convective and mixed/stratiform events that occurred during the North American monsoon season over a dense gauge network at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed in the southwestern United States. The spatial coefficient of variation for the precipitation field is employed as an indicator of event morphology, and a gauge clustering factor CF is formulated as a new, scale‐independent measure of network organization. We consider that CF < 0 (a more distributed gauge network) will produce interpolation errors by reduced resolution of the precipitation field and that CF > 0 (clustering in the gauge network) will produce errors because of reduced areal representation of the precipitation field. Spatial interpolation is performed using both inverse‐distance‐weighted (IDW) and multiquadric‐biharmonic (MQB) methods. We employ ensembles of randomly selected network subsets for the statistical evaluation of interpolation errors in comparison with the observed precipitation. The magnitude of interpolation errors and differences in accuracy between interpolation methods depend on both the density and the geometrical organization of the gauge network. Generally, MQB methods outperform IDW methods in terms of interpolation accuracy under all conditions, but it is found that the order of the IDW method is important to the results and may, under some conditions, be just as accurate as the MQB method. In almost all results it is demonstrated that the inverse‐distance‐squared method for spatial interpolation, commonly employed in operational analyses and for engineering assessments, is inferior to the ID‐cubed method, which is also more computationally efficient than the MQB method in studies of large networks.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.</note>
<subject>
<genre>keywords</genre>
<topic>North American monsoon</topic>
<topic>spatial interpolation</topic>
<topic>inverse‐distance</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Water Resources Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Water Resour. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/specialSection/GULCH1">Fifty Years of Research and Data Collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0500">COMPUTATIONAL GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0500">Computational Geophysics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1854">Precipitation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1848">Monitoring networks</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1840">Hydrometeorology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1900">INFORMATICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1980">Spatial analysis and representation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3200">MATHEMATICAL GEOPHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3252">Spatial analysis</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3354">Precipitation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4319">Spatial modeling</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Regular Article</topic>
</subject>
<identifier type="ISSN">0043-1397</identifier>
<identifier type="eISSN">1944-7973</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-7973</identifier>
<identifier type="CODEN">WRERAQ</identifier>
<identifier type="PublisherID">WRCR</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>44</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">1D0591A2956C432D31911A314CE9BFCEE3049B81</identifier>
<identifier type="DOI">10.1029/2006WR005788</identifier>
<identifier type="ArticleID">2006WR005788</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2008 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001246 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001246 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1D0591A2956C432D31911A314CE9BFCEE3049B81
   |texte=   Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024