Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reflectance processing of remote sensing spectroradiometer data

Identifieur interne : 001119 ( Istex/Corpus ); précédent : 001118; suivant : 001120

Reflectance processing of remote sensing spectroradiometer data

Auteurs : Derek R. Peddle ; H. Peter White ; Raymond J. Soffer ; John R. Miller ; Ellsworth F. Ledrew

Source :

RBID : ISTEX:7E626890A385AE416ADC4FF5FB37A134F3679930

Abstract

Spectral reflectance is the ratio of incident-to-reflected radiant flux measured from an object or area over specified wavelengths. Unlike radiance and irradiance values, reflectance is an inherent property of an object and is independent of time, location, illumination intensity, atmospheric conditions and weather. Although reflectance is a key unit of measure in remote sensing, it is not measured directly and instead must be derived. Accordingly, the conversion of field and laboratory measurements of spectral radiance into reflectance values is a frequent requirement with ground data in support of airborne and satellite remote sensing applications in the environmental and earth sciences. In this paper, laboratory and computer methods for processing field spectroradiometer measurements of spectral radiance into calibrated absolute reflectance values are described. Target radiance measures are obtained under direct and diffuse illumination using a portable field spectroradiometer, with irradiance spectra captured by near simultaneous acquisition of reflected radiation from a reference panel. The approach for converting raw target and panel radiance spectra to calibrated reflectance involves five major processing stages: (i) panel calibration, (ii) solar zenith angle computations, (iii) spectral and angular interpolation, (iv) computation of reflectance, and (v) automated batch mode execution of stages (ii)–(iv) for processing large data volumes. Equipment, methods, and computer programs for achieving these stages are described. Example forestry ground spectra acquired in the Boreal Ecosystem Atmosphere Study (BOREAS) are presented to illustrate raw field measurements and final reflectance products. These methods would also be useful in other applications such as agriculture, water resources, oceanic studies, rangeland management, and geological exploration and mineral identification.

Url:
DOI: 10.1016/S0098-3004(00)00096-0

Links to Exploration step

ISTEX:7E626890A385AE416ADC4FF5FB37A134F3679930

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Reflectance processing of remote sensing spectroradiometer data</title>
<author>
<name sortKey="Peddle, Derek R" sort="Peddle, Derek R" uniqKey="Peddle D" first="Derek R." last="Peddle">Derek R. Peddle</name>
<affiliation>
<mods:affiliation>E-mail: derek.peddle@uleth.ca</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Geography, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peter White, H" sort="Peter White, H" uniqKey="Peter White H" first="H." last="Peter White">H. Peter White</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soffer, Raymond J" sort="Soffer, Raymond J" uniqKey="Soffer R" first="Raymond J." last="Soffer">Raymond J. Soffer</name>
<affiliation>
<mods:affiliation>Instrument Services Laboratory, CRESTech, York University, North York, Ont., Canada M3J 1P3</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, John R" sort="Miller, John R" uniqKey="Miller J" first="John R." last="Miller">John R. Miller</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ledrew, Ellsworth F" sort="Ledrew, Ellsworth F" uniqKey="Ledrew E" first="Ellsworth F." last="Ledrew">Ellsworth F. Ledrew</name>
<affiliation>
<mods:affiliation>Department of Geography, University of Waterloo, Waterloo, Ont., Canada N2L 3G1</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7E626890A385AE416ADC4FF5FB37A134F3679930</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0098-3004(00)00096-0</idno>
<idno type="url">https://api.istex.fr/document/7E626890A385AE416ADC4FF5FB37A134F3679930/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001119</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001119</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Reflectance processing of remote sensing spectroradiometer data</title>
<author>
<name sortKey="Peddle, Derek R" sort="Peddle, Derek R" uniqKey="Peddle D" first="Derek R." last="Peddle">Derek R. Peddle</name>
<affiliation>
<mods:affiliation>E-mail: derek.peddle@uleth.ca</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Geography, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peter White, H" sort="Peter White, H" uniqKey="Peter White H" first="H." last="Peter White">H. Peter White</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soffer, Raymond J" sort="Soffer, Raymond J" uniqKey="Soffer R" first="Raymond J." last="Soffer">Raymond J. Soffer</name>
<affiliation>
<mods:affiliation>Instrument Services Laboratory, CRESTech, York University, North York, Ont., Canada M3J 1P3</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, John R" sort="Miller, John R" uniqKey="Miller J" first="John R." last="Miller">John R. Miller</name>
<affiliation>
<mods:affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ledrew, Ellsworth F" sort="Ledrew, Ellsworth F" uniqKey="Ledrew E" first="Ellsworth F." last="Ledrew">Ellsworth F. Ledrew</name>
<affiliation>
<mods:affiliation>Department of Geography, University of Waterloo, Waterloo, Ont., Canada N2L 3G1</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Computers and Geosciences</title>
<title level="j" type="abbrev">CAGEO</title>
<idno type="ISSN">0098-3004</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="203">203</biblScope>
<biblScope unit="page" to="213">213</biblScope>
</imprint>
<idno type="ISSN">0098-3004</idno>
</series>
<idno type="istex">7E626890A385AE416ADC4FF5FB37A134F3679930</idno>
<idno type="DOI">10.1016/S0098-3004(00)00096-0</idno>
<idno type="PII">S0098-3004(00)00096-0</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0098-3004</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Spectral reflectance is the ratio of incident-to-reflected radiant flux measured from an object or area over specified wavelengths. Unlike radiance and irradiance values, reflectance is an inherent property of an object and is independent of time, location, illumination intensity, atmospheric conditions and weather. Although reflectance is a key unit of measure in remote sensing, it is not measured directly and instead must be derived. Accordingly, the conversion of field and laboratory measurements of spectral radiance into reflectance values is a frequent requirement with ground data in support of airborne and satellite remote sensing applications in the environmental and earth sciences. In this paper, laboratory and computer methods for processing field spectroradiometer measurements of spectral radiance into calibrated absolute reflectance values are described. Target radiance measures are obtained under direct and diffuse illumination using a portable field spectroradiometer, with irradiance spectra captured by near simultaneous acquisition of reflected radiation from a reference panel. The approach for converting raw target and panel radiance spectra to calibrated reflectance involves five major processing stages: (i) panel calibration, (ii) solar zenith angle computations, (iii) spectral and angular interpolation, (iv) computation of reflectance, and (v) automated batch mode execution of stages (ii)–(iv) for processing large data volumes. Equipment, methods, and computer programs for achieving these stages are described. Example forestry ground spectra acquired in the Boreal Ecosystem Atmosphere Study (BOREAS) are presented to illustrate raw field measurements and final reflectance products. These methods would also be useful in other applications such as agriculture, water resources, oceanic studies, rangeland management, and geological exploration and mineral identification.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Derek R. Peddle</name>
<affiliations>
<json:string>E-mail: derek.peddle@uleth.ca</json:string>
<json:string>Department of Geography, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4</json:string>
</affiliations>
</json:item>
<json:item>
<name>H. Peter White</name>
<affiliations>
<json:string>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</json:string>
</affiliations>
</json:item>
<json:item>
<name>Raymond J. Soffer</name>
<affiliations>
<json:string>Instrument Services Laboratory, CRESTech, York University, North York, Ont., Canada M3J 1P3</json:string>
</affiliations>
</json:item>
<json:item>
<name>John R. Miller</name>
<affiliations>
<json:string>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ellsworth F. LeDrew</name>
<affiliations>
<json:string>Department of Geography, University of Waterloo, Waterloo, Ont., Canada N2L 3G1</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Remote sensing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Reflectance</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Spectroradiometer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>BOREAS</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Calibration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Radiance</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Spectral reflectance is the ratio of incident-to-reflected radiant flux measured from an object or area over specified wavelengths. Unlike radiance and irradiance values, reflectance is an inherent property of an object and is independent of time, location, illumination intensity, atmospheric conditions and weather. Although reflectance is a key unit of measure in remote sensing, it is not measured directly and instead must be derived. Accordingly, the conversion of field and laboratory measurements of spectral radiance into reflectance values is a frequent requirement with ground data in support of airborne and satellite remote sensing applications in the environmental and earth sciences. In this paper, laboratory and computer methods for processing field spectroradiometer measurements of spectral radiance into calibrated absolute reflectance values are described. Target radiance measures are obtained under direct and diffuse illumination using a portable field spectroradiometer, with irradiance spectra captured by near simultaneous acquisition of reflected radiation from a reference panel. The approach for converting raw target and panel radiance spectra to calibrated reflectance involves five major processing stages: (i) panel calibration, (ii) solar zenith angle computations, (iii) spectral and angular interpolation, (iv) computation of reflectance, and (v) automated batch mode execution of stages (ii)–(iv) for processing large data volumes. Equipment, methods, and computer programs for achieving these stages are described. Example forestry ground spectra acquired in the Boreal Ecosystem Atmosphere Study (BOREAS) are presented to illustrate raw field measurements and final reflectance products. These methods would also be useful in other applications such as agriculture, water resources, oceanic studies, rangeland management, and geological exploration and mineral identification.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>544 x 743 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1916</abstractCharCount>
<pdfWordCount>5928</pdfWordCount>
<pdfCharCount>38264</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>259</abstractWordCount>
</qualityIndicators>
<title>Reflectance processing of remote sensing spectroradiometer data</title>
<pii>
<json:string>S0098-3004(00)00096-0</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<volume>Vol. 1</volume>
<pages>
<last>114</last>
<first>109</first>
</pages>
<language>
<json:string>unknown</json:string>
</language>
<title>Seventh International Symposium on Physical Measurements and Signatures in Remote Sensing</title>
</serie>
<host>
<volume>27</volume>
<pii>
<json:string>S0098-3004(00)X0061-1</json:string>
</pii>
<pages>
<last>213</last>
<first>203</first>
</pages>
<issn>
<json:string>0098-3004</json:string>
</issn>
<issue>2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Computers and Geosciences</title>
<publicationDate>2001</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>computer science, interdisciplinary applications</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>geochemistry & geophysics</json:string>
</scienceMetrix>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0098-3004(00)00096-0</json:string>
</doi>
<id>7E626890A385AE416ADC4FF5FB37A134F3679930</id>
<score>0.038543083</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7E626890A385AE416ADC4FF5FB37A134F3679930/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7E626890A385AE416ADC4FF5FB37A134F3679930/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7E626890A385AE416ADC4FF5FB37A134F3679930/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Reflectance processing of remote sensing spectroradiometer data</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science Ltd</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note>Code available at http://www.iamg.org/CGEditor/index.htm.</note>
<note type="content">Fig. 1: Excel spreadsheet for spectral and angular interpolation of panel calibration BRFs.</note>
<note type="content">Fig. 2: Raw spectral digital number (DN) field measurements of sunlit lichen target and Kodak Grey Card (KGC) white reference panel used in computation of reflectance. Spectra shown from BOREAS SSA OJP during 1994 IFC-3.</note>
<note type="content">Fig. 3: Sunlit background reflectance spectra of lichen derived using field spectroradiometer measurements from Old Jack Pine forest stand. Original field and panel spectra shown in Fig. 2.</note>
<note type="content">Table 1: Example output reflectance file from computer macro program. Each file contains header information describing field spectroradiometer and data collection parameters, as well as final processed reflectance values (full table not shown)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Reflectance processing of remote sensing spectroradiometer data</title>
<author xml:id="author-1">
<persName>
<forename type="first">Derek R.</forename>
<surname>Peddle</surname>
</persName>
<email>derek.peddle@uleth.ca</email>
<note type="biography">http://home.uleth.ca/geo/derekp.htm.</note>
<note type="correspondence">
<p>Corresponding author.Tel.: 1-403-329-2524; fax: 1-403-329-2016</p>
</note>
<affiliation>http://home.uleth.ca/geo/derekp.htm.</affiliation>
<affiliation>Department of Geography, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">H.</forename>
<surname>Peter White</surname>
</persName>
<note type="biography">Current address: Canada Centre for Remote Sensing, Natural Resources Canada, Ottawa, Ont., Canada K1A 0Y7.</note>
<affiliation>Current address: Canada Centre for Remote Sensing, Natural Resources Canada, Ottawa, Ont., Canada K1A 0Y7.</affiliation>
<affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Raymond J.</forename>
<surname>Soffer</surname>
</persName>
<note type="biography">Current address: Routes AstroEngineering, Kanata, Ont., Canada K2K 2B1.</note>
<affiliation>Current address: Routes AstroEngineering, Kanata, Ont., Canada K2K 2B1.</affiliation>
<affiliation>Instrument Services Laboratory, CRESTech, York University, North York, Ont., Canada M3J 1P3</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">John R.</forename>
<surname>Miller</surname>
</persName>
<affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Ellsworth F.</forename>
<surname>LeDrew</surname>
</persName>
<affiliation>Department of Geography, University of Waterloo, Waterloo, Ont., Canada N2L 3G1</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Computers and Geosciences</title>
<title level="j" type="abbrev">CAGEO</title>
<idno type="pISSN">0098-3004</idno>
<idno type="PII">S0098-3004(00)X0061-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="203">203</biblScope>
<biblScope unit="page" to="213">213</biblScope>
</imprint>
</monogr>
<idno type="istex">7E626890A385AE416ADC4FF5FB37A134F3679930</idno>
<idno type="DOI">10.1016/S0098-3004(00)00096-0</idno>
<idno type="PII">S0098-3004(00)00096-0</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Spectral reflectance is the ratio of incident-to-reflected radiant flux measured from an object or area over specified wavelengths. Unlike radiance and irradiance values, reflectance is an inherent property of an object and is independent of time, location, illumination intensity, atmospheric conditions and weather. Although reflectance is a key unit of measure in remote sensing, it is not measured directly and instead must be derived. Accordingly, the conversion of field and laboratory measurements of spectral radiance into reflectance values is a frequent requirement with ground data in support of airborne and satellite remote sensing applications in the environmental and earth sciences. In this paper, laboratory and computer methods for processing field spectroradiometer measurements of spectral radiance into calibrated absolute reflectance values are described. Target radiance measures are obtained under direct and diffuse illumination using a portable field spectroradiometer, with irradiance spectra captured by near simultaneous acquisition of reflected radiation from a reference panel. The approach for converting raw target and panel radiance spectra to calibrated reflectance involves five major processing stages: (i) panel calibration, (ii) solar zenith angle computations, (iii) spectral and angular interpolation, (iv) computation of reflectance, and (v) automated batch mode execution of stages (ii)–(iv) for processing large data volumes. Equipment, methods, and computer programs for achieving these stages are described. Example forestry ground spectra acquired in the Boreal Ecosystem Atmosphere Study (BOREAS) are presented to illustrate raw field measurements and final reflectance products. These methods would also be useful in other applications such as agriculture, water resources, oceanic studies, rangeland management, and geological exploration and mineral identification.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Remote sensing</term>
</item>
<item>
<term>Reflectance</term>
</item>
<item>
<term>Spectroradiometer</term>
</item>
<item>
<term>BOREAS</term>
</item>
<item>
<term>Calibration</term>
</item>
<item>
<term>Radiance</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-05-04">Modified</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7E626890A385AE416ADC4FF5FB37A134F3679930/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CAGEO</jid>
<aid>936</aid>
<ce:pii>S0098-3004(00)00096-0</ce:pii>
<ce:doi>10.1016/S0098-3004(00)00096-0</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>Code available at http://www.iamg.org/CGEditor/index.htm.</ce:note-para>
</ce:article-footnote>
<ce:title>Reflectance processing of remote sensing spectroradiometer data</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Derek R.</ce:given-name>
<ce:surname>Peddle</ce:surname>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFFA">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>derek.peddle@uleth.ca</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>H.</ce:given-name>
<ce:surname>Peter White</ce:surname>
<ce:cross-ref refid="FN2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFFB">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Raymond J.</ce:given-name>
<ce:surname>Soffer</ce:surname>
<ce:cross-ref refid="FN3">
<ce:sup>3</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFFC">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>John R.</ce:given-name>
<ce:surname>Miller</ce:surname>
<ce:cross-ref refid="AFFB">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Ellsworth F.</ce:given-name>
<ce:surname>LeDrew</ce:surname>
<ce:cross-ref refid="AFFD">
<ce:sup>d</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFFA">
<ce:label>a</ce:label>
<ce:textfn>Department of Geography, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFFB">
<ce:label>b</ce:label>
<ce:textfn>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFFC">
<ce:label>c</ce:label>
<ce:textfn>Instrument Services Laboratory, CRESTech, York University, North York, Ont., Canada M3J 1P3</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFFD">
<ce:label>d</ce:label>
<ce:textfn>Department of Geography, University of Waterloo, Waterloo, Ont., Canada N2L 3G1</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author.Tel.: 1-403-329-2524; fax: 1-403-329-2016</ce:text>
</ce:correspondence>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>http://home.uleth.ca/geo/derekp.htm.</ce:note-para>
</ce:footnote>
<ce:footnote id="FN2">
<ce:label>2</ce:label>
<ce:note-para>Current address: Canada Centre for Remote Sensing, Natural Resources Canada, Ottawa, Ont., Canada K1A 0Y7.</ce:note-para>
</ce:footnote>
<ce:footnote id="FN3">
<ce:label>3</ce:label>
<ce:note-para>Current address: Routes AstroEngineering, Kanata, Ont., Canada K2K 2B1.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="18" month="9" year="1998"></ce:date-received>
<ce:date-revised day="4" month="5" year="2000"></ce:date-revised>
<ce:date-accepted day="4" month="5" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Spectral reflectance is the ratio of incident-to-reflected radiant flux measured from an object or area over specified wavelengths. Unlike radiance and irradiance values, reflectance is an inherent property of an object and is independent of time, location, illumination intensity, atmospheric conditions and weather. Although reflectance is a key unit of measure in remote sensing, it is not measured directly and instead must be derived. Accordingly, the conversion of field and laboratory measurements of spectral radiance into reflectance values is a frequent requirement with ground data in support of airborne and satellite remote sensing applications in the environmental and earth sciences. In this paper, laboratory and computer methods for processing field spectroradiometer measurements of spectral radiance into calibrated absolute reflectance values are described. Target radiance measures are obtained under direct and diffuse illumination using a portable field spectroradiometer, with irradiance spectra captured by near simultaneous acquisition of reflected radiation from a reference panel. The approach for converting raw target and panel radiance spectra to calibrated reflectance involves five major processing stages: (i) panel calibration, (ii) solar zenith angle computations, (iii) spectral and angular interpolation, (iv) computation of reflectance, and (v) automated batch mode execution of stages (ii)–(iv) for processing large data volumes. Equipment, methods, and computer programs for achieving these stages are described. Example forestry ground spectra acquired in the Boreal Ecosystem Atmosphere Study (BOREAS) are presented to illustrate raw field measurements and final reflectance products. These methods would also be useful in other applications such as agriculture, water resources, oceanic studies, rangeland management, and geological exploration and mineral identification.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Remote sensing</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Reflectance</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Spectroradiometer</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>BOREAS</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Calibration</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Radiance</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Reflectance processing of remote sensing spectroradiometer data</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Reflectance processing of remote sensing spectroradiometer data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Derek R.</namePart>
<namePart type="family">Peddle</namePart>
<affiliation>E-mail: derek.peddle@uleth.ca</affiliation>
<affiliation>Department of Geography, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4</affiliation>
<description>Corresponding author.Tel.: 1-403-329-2524; fax: 1-403-329-2016</description>
<description>http://home.uleth.ca/geo/derekp.htm.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H.</namePart>
<namePart type="family">Peter White</namePart>
<affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</affiliation>
<description>Current address: Canada Centre for Remote Sensing, Natural Resources Canada, Ottawa, Ont., Canada K1A 0Y7.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raymond J.</namePart>
<namePart type="family">Soffer</namePart>
<affiliation>Instrument Services Laboratory, CRESTech, York University, North York, Ont., Canada M3J 1P3</affiliation>
<description>Current address: Routes AstroEngineering, Kanata, Ont., Canada K2K 2B1.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John R.</namePart>
<namePart type="family">Miller</namePart>
<affiliation>Department of Physics and Astronomy, CRESTech, York University, North York, Ont., Canada M3J 1P3</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellsworth F.</namePart>
<namePart type="family">LeDrew</namePart>
<affiliation>Department of Geography, University of Waterloo, Waterloo, Ont., Canada N2L 3G1</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateModified encoding="w3cdtf">2000-05-04</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Spectral reflectance is the ratio of incident-to-reflected radiant flux measured from an object or area over specified wavelengths. Unlike radiance and irradiance values, reflectance is an inherent property of an object and is independent of time, location, illumination intensity, atmospheric conditions and weather. Although reflectance is a key unit of measure in remote sensing, it is not measured directly and instead must be derived. Accordingly, the conversion of field and laboratory measurements of spectral radiance into reflectance values is a frequent requirement with ground data in support of airborne and satellite remote sensing applications in the environmental and earth sciences. In this paper, laboratory and computer methods for processing field spectroradiometer measurements of spectral radiance into calibrated absolute reflectance values are described. Target radiance measures are obtained under direct and diffuse illumination using a portable field spectroradiometer, with irradiance spectra captured by near simultaneous acquisition of reflected radiation from a reference panel. The approach for converting raw target and panel radiance spectra to calibrated reflectance involves five major processing stages: (i) panel calibration, (ii) solar zenith angle computations, (iii) spectral and angular interpolation, (iv) computation of reflectance, and (v) automated batch mode execution of stages (ii)–(iv) for processing large data volumes. Equipment, methods, and computer programs for achieving these stages are described. Example forestry ground spectra acquired in the Boreal Ecosystem Atmosphere Study (BOREAS) are presented to illustrate raw field measurements and final reflectance products. These methods would also be useful in other applications such as agriculture, water resources, oceanic studies, rangeland management, and geological exploration and mineral identification.</abstract>
<note>Code available at http://www.iamg.org/CGEditor/index.htm.</note>
<note type="content">Fig. 1: Excel spreadsheet for spectral and angular interpolation of panel calibration BRFs.</note>
<note type="content">Fig. 2: Raw spectral digital number (DN) field measurements of sunlit lichen target and Kodak Grey Card (KGC) white reference panel used in computation of reflectance. Spectra shown from BOREAS SSA OJP during 1994 IFC-3.</note>
<note type="content">Fig. 3: Sunlit background reflectance spectra of lichen derived using field spectroradiometer measurements from Old Jack Pine forest stand. Original field and panel spectra shown in Fig. 2.</note>
<note type="content">Table 1: Example output reflectance file from computer macro program. Each file contains header information describing field spectroradiometer and data collection parameters, as well as final processed reflectance values (full table not shown)</note>
<subject>
<genre>Keywords</genre>
<topic>Remote sensing</topic>
<topic>Reflectance</topic>
<topic>Spectroradiometer</topic>
<topic>BOREAS</topic>
<topic>Calibration</topic>
<topic>Radiance</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Computers and Geosciences</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CAGEO</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">200103</dateIssued>
</originInfo>
<identifier type="ISSN">0098-3004</identifier>
<identifier type="PII">S0098-3004(00)X0061-1</identifier>
<part>
<date>200103</date>
<detail type="volume">
<number>27</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>133</start>
<end>264</end>
</extent>
<extent unit="pages">
<start>203</start>
<end>213</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">7E626890A385AE416ADC4FF5FB37A134F3679930</identifier>
<identifier type="DOI">10.1016/S0098-3004(00)00096-0</identifier>
<identifier type="PII">S0098-3004(00)00096-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001119 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001119 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7E626890A385AE416ADC4FF5FB37A134F3679930
   |texte=   Reflectance processing of remote sensing spectroradiometer data
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024