Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Runoff simulation sensitivity to remotely sensed initial soil water content

Identifieur interne : 001115 ( Istex/Corpus ); précédent : 001114; suivant : 001116

Runoff simulation sensitivity to remotely sensed initial soil water content

Auteurs : D. C. Goodrich ; T. J. Schmugge ; T. J. Jackson ; C. L. Unkrich ; T. O. Keefer ; R. Parry ; L. B. Bach ; S. A. Amer

Source :

RBID : ISTEX:408673476B4443DCC76C56301D316380C1FF7738

Abstract

A variety of aircraft remotely sensed and conventional ground‐based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground‐based point methods were used to define prestorm initial SW for a distributed rainfall‐runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin‐wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite‐based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.

Url:
DOI: 10.1029/93WR03083

Links to Exploration step

ISTEX:408673476B4443DCC76C56301D316380C1FF7738

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Runoff simulation sensitivity to remotely sensed initial soil water content</title>
<author wicri:is="90%">
<name sortKey="Goodrich, D C" sort="Goodrich, D C" uniqKey="Goodrich D" first="D. C." last="Goodrich">D. C. Goodrich</name>
</author>
<author wicri:is="90%">
<name sortKey="Schmugge, T J" sort="Schmugge, T J" uniqKey="Schmugge T" first="T. J." last="Schmugge">T. J. Schmugge</name>
</author>
<author wicri:is="90%">
<name sortKey="Jackson, T J" sort="Jackson, T J" uniqKey="Jackson T" first="T. J." last="Jackson">T. J. Jackson</name>
</author>
<author wicri:is="90%">
<name sortKey="Unkrich, C L" sort="Unkrich, C L" uniqKey="Unkrich C" first="C. L." last="Unkrich">C. L. Unkrich</name>
</author>
<author wicri:is="90%">
<name sortKey="Keefer, T O" sort="Keefer, T O" uniqKey="Keefer T" first="T. O." last="Keefer">T. O. Keefer</name>
</author>
<author wicri:is="90%">
<name sortKey="Parry, R" sort="Parry, R" uniqKey="Parry R" first="R." last="Parry">R. Parry</name>
</author>
<author wicri:is="90%">
<name sortKey="Bach, L B" sort="Bach, L B" uniqKey="Bach L" first="L. B." last="Bach">L. B. Bach</name>
</author>
<author wicri:is="90%">
<name sortKey="Amer, S A" sort="Amer, S A" uniqKey="Amer S" first="S. A." last="Amer">S. A. Amer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:408673476B4443DCC76C56301D316380C1FF7738</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1029/93WR03083</idno>
<idno type="url">https://api.istex.fr/document/408673476B4443DCC76C56301D316380C1FF7738/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001115</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001115</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Runoff simulation sensitivity to remotely sensed initial soil water content</title>
<author wicri:is="90%">
<name sortKey="Goodrich, D C" sort="Goodrich, D C" uniqKey="Goodrich D" first="D. C." last="Goodrich">D. C. Goodrich</name>
</author>
<author wicri:is="90%">
<name sortKey="Schmugge, T J" sort="Schmugge, T J" uniqKey="Schmugge T" first="T. J." last="Schmugge">T. J. Schmugge</name>
</author>
<author wicri:is="90%">
<name sortKey="Jackson, T J" sort="Jackson, T J" uniqKey="Jackson T" first="T. J." last="Jackson">T. J. Jackson</name>
</author>
<author wicri:is="90%">
<name sortKey="Unkrich, C L" sort="Unkrich, C L" uniqKey="Unkrich C" first="C. L." last="Unkrich">C. L. Unkrich</name>
</author>
<author wicri:is="90%">
<name sortKey="Keefer, T O" sort="Keefer, T O" uniqKey="Keefer T" first="T. O." last="Keefer">T. O. Keefer</name>
</author>
<author wicri:is="90%">
<name sortKey="Parry, R" sort="Parry, R" uniqKey="Parry R" first="R." last="Parry">R. Parry</name>
</author>
<author wicri:is="90%">
<name sortKey="Bach, L B" sort="Bach, L B" uniqKey="Bach L" first="L. B." last="Bach">L. B. Bach</name>
</author>
<author wicri:is="90%">
<name sortKey="Amer, S A" sort="Amer, S A" uniqKey="Amer S" first="S. A." last="Amer">S. A. Amer</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="ISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1994-05">1994-05</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1393">1393</biblScope>
<biblScope unit="page" to="1405">1405</biblScope>
</imprint>
<idno type="ISSN">0043-1397</idno>
</series>
<idno type="istex">408673476B4443DCC76C56301D316380C1FF7738</idno>
<idno type="DOI">10.1029/93WR03083</idno>
<idno type="ArticleID">93WR03083</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0043-1397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A variety of aircraft remotely sensed and conventional ground‐based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground‐based point methods were used to define prestorm initial SW for a distributed rainfall‐runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin‐wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite‐based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>D. C. Goodrich</name>
</json:item>
<json:item>
<name>T. J. Schmugge</name>
</json:item>
<json:item>
<name>T. J. Jackson</name>
</json:item>
<json:item>
<name>C. L. Unkrich</name>
</json:item>
<json:item>
<name>T. O. Keefer</name>
</json:item>
<json:item>
<name>R. Parry</name>
</json:item>
<json:item>
<name>L. B. Bach</name>
</json:item>
<json:item>
<name>S. A. Amer</name>
</json:item>
</author>
<articleId>
<json:string>93WR03083</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A variety of aircraft remotely sensed and conventional ground‐based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground‐based point methods were used to define prestorm initial SW for a distributed rainfall‐runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin‐wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite‐based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>601 x 793 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1724</abstractCharCount>
<pdfWordCount>6019</pdfWordCount>
<pdfCharCount>48645</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>256</abstractWordCount>
</qualityIndicators>
<title>Runoff simulation sensitivity to remotely sensed initial soil water content</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>30</volume>
<publisherId>
<json:string>WRCR</json:string>
</publisherId>
<pages>
<total>13</total>
<last>1405</last>
<first>1393</first>
</pages>
<issn>
<json:string>0043-1397</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Monsoon '90 Multidisciplinary Experiment</value>
</json:item>
<json:item>
<value>HYDROLOGY</value>
</json:item>
<json:item>
<value>Streamflow</value>
</json:item>
<json:item>
<value>Special Section: Monsoon '90 Multidisciplinary Experiment</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1944-7973</json:string>
</eissn>
<title>Water Resources Research</title>
<doi>
<json:string>10.1002/(ISSN)1944-7973</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
<json:string>limnology</json:string>
<json:string>environmental sciences</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1029/93WR03083</json:string>
</doi>
<id>408673476B4443DCC76C56301D316380C1FF7738</id>
<score>0.041485194</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/408673476B4443DCC76C56301D316380C1FF7738/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/408673476B4443DCC76C56301D316380C1FF7738/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/408673476B4443DCC76C56301D316380C1FF7738/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Runoff simulation sensitivity to remotely sensed initial soil water content</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>This paper is not subject to U.S. copyright. Published in 1994 by the American Geophysical Union.</p>
</availability>
<date>1994</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Runoff simulation sensitivity to remotely sensed initial soil water content</title>
<author xml:id="author-1">
<persName>
<forename type="first">D. C.</forename>
<surname>Goodrich</surname>
</persName>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">T. J.</forename>
<surname>Schmugge</surname>
</persName>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">T. J.</forename>
<surname>Jackson</surname>
</persName>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">C. L.</forename>
<surname>Unkrich</surname>
</persName>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">T. O.</forename>
<surname>Keefer</surname>
</persName>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">R.</forename>
<surname>Parry</surname>
</persName>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">L. B.</forename>
<surname>Bach</surname>
</persName>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">S. A.</forename>
<surname>Amer</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Water Resources Research</title>
<title level="j" type="abbrev">Water Resour. Res.</title>
<idno type="pISSN">0043-1397</idno>
<idno type="eISSN">1944-7973</idno>
<idno type="DOI">10.1002/(ISSN)1944-7973</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="1994-05"></date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1393">1393</biblScope>
<biblScope unit="page" to="1405">1405</biblScope>
</imprint>
</monogr>
<idno type="istex">408673476B4443DCC76C56301D316380C1FF7738</idno>
<idno type="DOI">10.1029/93WR03083</idno>
<idno type="ArticleID">93WR03083</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1994</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>A variety of aircraft remotely sensed and conventional ground‐based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground‐based point methods were used to define prestorm initial SW for a distributed rainfall‐runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin‐wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite‐based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>Monsoon '90 Multidisciplinary Experiment</term>
</item>
<item>
<term>HYDROLOGY</term>
</item>
<item>
<term>Streamflow</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Special Section: Monsoon '90 Multidisciplinary Experiment</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1992-08-13">Received</change>
<change when="1993-10-19">Registration</change>
<change when="1994-05">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/408673476B4443DCC76C56301D316380C1FF7738/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="wrcr6416">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1944-7973</doi>
<issn type="print">0043-1397</issn>
<issn type="electronic">1944-7973</issn>
<idGroup>
<id type="product" value="WRCR"></id>
<id type="coden" value="WRERAQ"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="WATER RESOURCES RESEARCH">Water Resources Research</title>
<title type="short">Water Resour. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi>10.1002/wrcr.v30.5</doi>
<numberingGroup>
<numbering type="journalVolume" number="30">30</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="1994-05">May 1994</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="180" status="forIssue">
<doi>10.1029/93WR03083</doi>
<idGroup>
<id type="editorialOffice" value="93WR03083"></id>
<id type="unit" value="WRCR6416"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Special Section: Monsoon '90 Multidisciplinary Experiment</title>
<title type="tocHeading1">Special Section: Monsoon '90 Multidisciplinary Experiment</title>
</titleGroup>
<copyright ownership="thirdParty">This paper is not subject to U.S. copyright. Published in 1994 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1992-08-13"></event>
<event type="manuscriptAccepted" date="1993-10-19"></event>
<event type="publishedPrint" date="1994-05"></event>
<event type="firstOnline" date="2010-07-09"></event>
<event type="publishedOnlineFinalForm" date="2010-07-09"></event>
<event type="publishedPrint" date="1994-05"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2013-02-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-21"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1393</numbering>
<numbering type="pageLast">1405</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/specialSection/MONSOON2">Monsoon '90 Multidisciplinary Experiment</subject>
<subject href="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1860">Streamflow</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="wrcr6416-cit-0000" type="self">
<author>
<familyName>Goodrich</familyName>
,
<givenNames>D. C.</givenNames>
</author>
,
<author>
<givenNames>T. J.</givenNames>
<familyName>Schmugge</familyName>
</author>
,
<author>
<givenNames>T. J.</givenNames>
<familyName>Jackson</familyName>
</author>
,
<author>
<givenNames>C. L.</givenNames>
<familyName>Unkrich</familyName>
</author>
,
<author>
<givenNames>T. O.</givenNames>
<familyName>Keefer</familyName>
</author>
,
<author>
<givenNames>R.</givenNames>
<familyName>Parry</familyName>
</author>
,
<author>
<givenNames>L. B.</givenNames>
<familyName>Bach</familyName>
</author>
, and
<author>
<givenNames>S. A.</givenNames>
<familyName>Amer</familyName>
</author>
(
<pubYear year="1994">1994</pubYear>
),
<articleTitle>Runoff simulation sensitivity to remotely sensed initial soil water content</articleTitle>
,
<journalTitle>Water Resour. Res.</journalTitle>
,
<vol>30</vol>
(
<issue>5</issue>
),
<pageFirst>1393</pageFirst>
<pageLast>1405</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/93WR03083">10.1029/93WR03083</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:WRCR.WRCR6416.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Runoff simulation sensitivity to remotely sensed initial soil water content</title>
<title type="shortAuthors">Goodrich ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="wrcr6416-cr-0001">
<personName>
<givenNames>D. C.</givenNames>
<familyName>Goodrich</familyName>
</personName>
</creator>
<creator xml:id="wrcr6416-cr-0002">
<personName>
<givenNames>T. J.</givenNames>
<familyName>Schmugge</familyName>
</personName>
</creator>
<creator xml:id="wrcr6416-cr-0003">
<personName>
<givenNames>T. J.</givenNames>
<familyName>Jackson</familyName>
</personName>
</creator>
<creator xml:id="wrcr6416-cr-0004">
<personName>
<givenNames>C. L.</givenNames>
<familyName>Unkrich</familyName>
</personName>
</creator>
<creator xml:id="wrcr6416-cr-0005">
<personName>
<givenNames>T. O.</givenNames>
<familyName>Keefer</familyName>
</personName>
</creator>
<creator xml:id="wrcr6416-cr-0006">
<personName>
<givenNames>R.</givenNames>
<familyName>Parry</familyName>
</personName>
</creator>
<creator xml:id="wrcr6416-cr-0007">
<personName>
<givenNames>L. B.</givenNames>
<familyName>Bach</familyName>
</personName>
</creator>
<creator xml:id="wrcr6416-cr-0008">
<personName>
<givenNames>S. A.</givenNames>
<familyName>Amer</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="wrcr6416-para-0001">A variety of aircraft remotely sensed and conventional ground‐based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground‐based point methods were used to define prestorm initial SW for a distributed rainfall‐runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km
<sup>2</sup>
) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin‐wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite‐based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Runoff simulation sensitivity to remotely sensed initial soil water content</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Runoff simulation sensitivity to remotely sensed initial soil water content</title>
</titleInfo>
<name type="personal">
<namePart type="given">D. C.</namePart>
<namePart type="family">Goodrich</namePart>
</name>
<name type="personal">
<namePart type="given">T. J.</namePart>
<namePart type="family">Schmugge</namePart>
</name>
<name type="personal">
<namePart type="given">T. J.</namePart>
<namePart type="family">Jackson</namePart>
</name>
<name type="personal">
<namePart type="given">C. L.</namePart>
<namePart type="family">Unkrich</namePart>
</name>
<name type="personal">
<namePart type="given">T. O.</namePart>
<namePart type="family">Keefer</namePart>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Parry</namePart>
</name>
<name type="personal">
<namePart type="given">L. B.</namePart>
<namePart type="family">Bach</namePart>
</name>
<name type="personal">
<namePart type="given">S. A.</namePart>
<namePart type="family">Amer</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">1994-05</dateIssued>
<dateCaptured encoding="w3cdtf">1992-08-13</dateCaptured>
<dateValid encoding="w3cdtf">1993-10-19</dateValid>
<edition>Goodrich, D. C., T. J. Schmugge, T. J. Jackson, C. L. Unkrich, T. O. Keefer, R. Parry, L. B. Bach, and S. A. Amer (1994), Runoff simulation sensitivity to remotely sensed initial soil water content, Water Resour. Res., 30(5), 1393–1405, doi:10.1029/93WR03083.</edition>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>A variety of aircraft remotely sensed and conventional ground‐based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground‐based point methods were used to define prestorm initial SW for a distributed rainfall‐runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin‐wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite‐based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Water Resources Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Water Resour. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/specialSection/MONSOON2">Monsoon '90 Multidisciplinary Experiment</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">HYDROLOGY</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1860">Streamflow</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Special Section: Monsoon '90 Multidisciplinary Experiment</topic>
</subject>
<identifier type="ISSN">0043-1397</identifier>
<identifier type="eISSN">1944-7973</identifier>
<identifier type="DOI">10.1002/(ISSN)1944-7973</identifier>
<identifier type="CODEN">WRERAQ</identifier>
<identifier type="PublisherID">WRCR</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>1393</start>
<end>1405</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">408673476B4443DCC76C56301D316380C1FF7738</identifier>
<identifier type="DOI">10.1029/93WR03083</identifier>
<identifier type="ArticleID">93WR03083</identifier>
<accessCondition type="use and reproduction" contentType="copyright">This paper is not subject to U.S. copyright. Published in 1994 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001115 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001115 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:408673476B4443DCC76C56301D316380C1FF7738
   |texte=   Runoff simulation sensitivity to remotely sensed initial soil water content
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024