Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relations between triazine flux, catchment topography and distance between maize fields and the drainage network

Identifieur interne : 001006 ( Istex/Corpus ); précédent : 001005; suivant : 001007

Relations between triazine flux, catchment topography and distance between maize fields and the drainage network

Auteurs : F. Colin ; C. Puech ; G. De Marsily

Source :

RBID : ISTEX:C636FED0878A3EFB1BFC94957928D5C96693ED65

English descriptors

Abstract

This paper puts forward a methodology permitting the identification of farming plots contributing to the pollution of surface water in order to define the zones most at risk from pesticide pollution. We worked at the scale of the small agricultural catchment (0.2–7.5km2) as it represents the appropriate level of organisation for agricultural land. The hypothesis tested was: the farther a field undergoing a pesticide treatment is from a channel network, the lower its impact on pollution at the catchment outlet. The study area, the Sousson catchment (120km2, Gers, France), has a “herring bone” structure: 50 independent tributaries supply the main drain. Pesticide sales show that atrazine is the most frequently used compound although it is only used for treating maize plots and that its application rate is constant. In two winter inter-storm measurement exercises, triazine flux values were collected at about 30 independent sub-basin outlets. The contributory areas are defined, with the aid of a GIS, as different strips around the channel network. The correlation between plots under maize in contributory zones and triazine flux at related sub-basin outlets is studied by using non-parametric and linear correlation coefficients. Finally, the most pertinent contributory zone is associated with the best correlation level. A catchment typology, based on a slope criterion, allows us to conclude that in steep slope catchments, the contributory area is best defined as a 50m wide strip around the channel network. In flat zones, the agricultural drainage network is particularly well developed: artificial drains extend the channel network extracted from the 1/25.000 scale topographic map, and the total surface area of the catchment must be taken to account.

Url:
DOI: 10.1016/S0022-1694(00)00288-2

Links to Exploration step

ISTEX:C636FED0878A3EFB1BFC94957928D5C96693ED65

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</title>
<author>
<name sortKey="Colin, F" sort="Colin, F" uniqKey="Colin F" first="F" last="Colin">F. Colin</name>
<affiliation>
<mods:affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author. Tel.: +33-4-6754-8700</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: francois.colin@teledetection.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Puech, C" sort="Puech, C" uniqKey="Puech C" first="C" last="Puech">C. Puech</name>
<affiliation>
<mods:affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: christian.puech@teledetection.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G" last="De Marsily">G. De Marsily</name>
<affiliation>
<mods:affiliation>UMR “Structure et Fonctionement des Systèmes Hydriques Continentaux”, Université P. et M. Curie 4, Pl. Jussieu 75252, Paris Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>1 Fax: +33-1-44-27-51-25.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gdm@ccr.jussieu.fr</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C636FED0878A3EFB1BFC94957928D5C96693ED65</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0022-1694(00)00288-2</idno>
<idno type="url">https://api.istex.fr/document/C636FED0878A3EFB1BFC94957928D5C96693ED65/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001006</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001006</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</title>
<author>
<name sortKey="Colin, F" sort="Colin, F" uniqKey="Colin F" first="F" last="Colin">F. Colin</name>
<affiliation>
<mods:affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author. Tel.: +33-4-6754-8700</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: francois.colin@teledetection.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Puech, C" sort="Puech, C" uniqKey="Puech C" first="C" last="Puech">C. Puech</name>
<affiliation>
<mods:affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: christian.puech@teledetection.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Marsily, G" sort="De Marsily, G" uniqKey="De Marsily G" first="G" last="De Marsily">G. De Marsily</name>
<affiliation>
<mods:affiliation>UMR “Structure et Fonctionement des Systèmes Hydriques Continentaux”, Université P. et M. Curie 4, Pl. Jussieu 75252, Paris Cedex 05, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>1 Fax: +33-1-44-27-51-25.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: gdm@ccr.jussieu.fr</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Hydrology</title>
<title level="j" type="abbrev">HYDROL</title>
<idno type="ISSN">0022-1694</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">236</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="139">139</biblScope>
<biblScope unit="page" to="152">152</biblScope>
</imprint>
<idno type="ISSN">0022-1694</idno>
</series>
<idno type="istex">C636FED0878A3EFB1BFC94957928D5C96693ED65</idno>
<idno type="DOI">10.1016/S0022-1694(00)00288-2</idno>
<idno type="PII">S0022-1694(00)00288-2</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-1694</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>GIS artificial network</term>
<term>Pesticide catchment</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper puts forward a methodology permitting the identification of farming plots contributing to the pollution of surface water in order to define the zones most at risk from pesticide pollution. We worked at the scale of the small agricultural catchment (0.2–7.5km2) as it represents the appropriate level of organisation for agricultural land. The hypothesis tested was: the farther a field undergoing a pesticide treatment is from a channel network, the lower its impact on pollution at the catchment outlet. The study area, the Sousson catchment (120km2, Gers, France), has a “herring bone” structure: 50 independent tributaries supply the main drain. Pesticide sales show that atrazine is the most frequently used compound although it is only used for treating maize plots and that its application rate is constant. In two winter inter-storm measurement exercises, triazine flux values were collected at about 30 independent sub-basin outlets. The contributory areas are defined, with the aid of a GIS, as different strips around the channel network. The correlation between plots under maize in contributory zones and triazine flux at related sub-basin outlets is studied by using non-parametric and linear correlation coefficients. Finally, the most pertinent contributory zone is associated with the best correlation level. A catchment typology, based on a slope criterion, allows us to conclude that in steep slope catchments, the contributory area is best defined as a 50m wide strip around the channel network. In flat zones, the agricultural drainage network is particularly well developed: artificial drains extend the channel network extracted from the 1/25.000 scale topographic map, and the total surface area of the catchment must be taken to account.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>F Colin</name>
<affiliations>
<json:string>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</json:string>
<json:string>Corresponding author. Tel.: +33-4-6754-8700</json:string>
<json:string>E-mail: francois.colin@teledetection.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>C Puech</name>
<affiliations>
<json:string>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</json:string>
<json:string>E-mail: christian.puech@teledetection.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>G de Marsily</name>
<affiliations>
<json:string>UMR “Structure et Fonctionement des Systèmes Hydriques Continentaux”, Université P. et M. Curie 4, Pl. Jussieu 75252, Paris Cedex 05, France</json:string>
<json:string>1 Fax: +33-1-44-27-51-25.</json:string>
<json:string>E-mail: gdm@ccr.jussieu.fr</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Pesticide catchment</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GIS artificial network</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>This paper puts forward a methodology permitting the identification of farming plots contributing to the pollution of surface water in order to define the zones most at risk from pesticide pollution. We worked at the scale of the small agricultural catchment (0.2–7.5km2) as it represents the appropriate level of organisation for agricultural land. The hypothesis tested was: the farther a field undergoing a pesticide treatment is from a channel network, the lower its impact on pollution at the catchment outlet. The study area, the Sousson catchment (120km2, Gers, France), has a “herring bone” structure: 50 independent tributaries supply the main drain. Pesticide sales show that atrazine is the most frequently used compound although it is only used for treating maize plots and that its application rate is constant. In two winter inter-storm measurement exercises, triazine flux values were collected at about 30 independent sub-basin outlets. The contributory areas are defined, with the aid of a GIS, as different strips around the channel network. The correlation between plots under maize in contributory zones and triazine flux at related sub-basin outlets is studied by using non-parametric and linear correlation coefficients. Finally, the most pertinent contributory zone is associated with the best correlation level. A catchment typology, based on a slope criterion, allows us to conclude that in steep slope catchments, the contributory area is best defined as a 50m wide strip around the channel network. In flat zones, the agricultural drainage network is particularly well developed: artificial drains extend the channel network extracted from the 1/25.000 scale topographic map, and the total surface area of the catchment must be taken to account.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>544 x 743 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>2</keywordCount>
<abstractCharCount>1772</abstractCharCount>
<pdfWordCount>5289</pdfWordCount>
<pdfCharCount>34229</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>270</abstractWordCount>
</qualityIndicators>
<title>Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</title>
<pii>
<json:string>S0022-1694(00)00288-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>236</volume>
<pii>
<json:string>S0022-1694(00)X0097-2</json:string>
</pii>
<pages>
<last>152</last>
<first>139</first>
</pages>
<issn>
<json:string>0022-1694</json:string>
</issn>
<issue>3–4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Journal of Hydrology</title>
<publicationDate>2000</publicationDate>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>engineering, civil</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0022-1694(00)00288-2</json:string>
</doi>
<id>C636FED0878A3EFB1BFC94957928D5C96693ED65</id>
<score>0.04354208</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C636FED0878A3EFB1BFC94957928D5C96693ED65/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C636FED0878A3EFB1BFC94957928D5C96693ED65/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C636FED0878A3EFB1BFC94957928D5C96693ED65/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2000 Elsevier Science B.V.</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Sousson catchment location map, Gers region, France.</note>
<note type="content">Fig. 2: Hydrographic network (topographic 1/25.000 map) and subcatchments, parcel limits and land-cover (example of maize plots).</note>
<note type="content">Fig. 3: Water flow at the outlet of the Sousson catchment and sampling period: (a) December 1997; (b) March 1998.</note>
<note type="content">Fig. 4: Triazine flows measured at studied catchment outlet (December 1997 and March 1998).</note>
<note type="content">Fig. 5: Space partition around the channel network, contributing maize area.</note>
<note type="content">Fig. 6: Basin classification according to the slope criterion Islope.</note>
<note type="content">Fig. 7: IGN 1/25.000 and active hydrographic network observed in the field.</note>
<note type="content">Table 1: Water flow, triazine concentration and triazine flow measurements</note>
<note type="content">Table 2: Variations between dates in a sampling period (CV: Coefficient of variation=Standard deviation/Arithmetic mean)</note>
<note type="content">Table 3: Correlation coefficients between triazine flow and maize contributing area defined by an efficiency threshold. Whole set of basins ((0.13): confidence level)</note>
<note type="content">Table 4: Correlation coefficients between triazine flow and maize contributing surfaces defined by an efficiency threshold. Downstream basins ((0.13): confidence level)</note>
<note type="content">Table 6: Correlation between maize areas depending on d. Case of downstream catchments (correlation is expressed by the linear correlation coefficient r)</note>
<note type="content">Table 5: Correlation coefficients between triazine flow and maize contributing area defined by an efficiency threshold, Upstream basins ((0.13%): confidence level)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</title>
<author xml:id="author-1">
<persName>
<forename type="first">F</forename>
<surname>Colin</surname>
</persName>
<email>francois.colin@teledetection.fr</email>
<affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</affiliation>
<affiliation>Corresponding author. Tel.: +33-4-6754-8700</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">C</forename>
<surname>Puech</surname>
</persName>
<email>christian.puech@teledetection.fr</email>
<affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">G</forename>
<surname>de Marsily</surname>
</persName>
<email>gdm@ccr.jussieu.fr</email>
<affiliation>UMR “Structure et Fonctionement des Systèmes Hydriques Continentaux”, Université P. et M. Curie 4, Pl. Jussieu 75252, Paris Cedex 05, France</affiliation>
<affiliation>1 Fax: +33-1-44-27-51-25.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Hydrology</title>
<title level="j" type="abbrev">HYDROL</title>
<idno type="pISSN">0022-1694</idno>
<idno type="PII">S0022-1694(00)X0097-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">236</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="139">139</biblScope>
<biblScope unit="page" to="152">152</biblScope>
</imprint>
</monogr>
<idno type="istex">C636FED0878A3EFB1BFC94957928D5C96693ED65</idno>
<idno type="DOI">10.1016/S0022-1694(00)00288-2</idno>
<idno type="PII">S0022-1694(00)00288-2</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>This paper puts forward a methodology permitting the identification of farming plots contributing to the pollution of surface water in order to define the zones most at risk from pesticide pollution. We worked at the scale of the small agricultural catchment (0.2–7.5km2) as it represents the appropriate level of organisation for agricultural land. The hypothesis tested was: the farther a field undergoing a pesticide treatment is from a channel network, the lower its impact on pollution at the catchment outlet. The study area, the Sousson catchment (120km2, Gers, France), has a “herring bone” structure: 50 independent tributaries supply the main drain. Pesticide sales show that atrazine is the most frequently used compound although it is only used for treating maize plots and that its application rate is constant. In two winter inter-storm measurement exercises, triazine flux values were collected at about 30 independent sub-basin outlets. The contributory areas are defined, with the aid of a GIS, as different strips around the channel network. The correlation between plots under maize in contributory zones and triazine flux at related sub-basin outlets is studied by using non-parametric and linear correlation coefficients. Finally, the most pertinent contributory zone is associated with the best correlation level. A catchment typology, based on a slope criterion, allows us to conclude that in steep slope catchments, the contributory area is best defined as a 50m wide strip around the channel network. In flat zones, the agricultural drainage network is particularly well developed: artificial drains extend the channel network extracted from the 1/25.000 scale topographic map, and the total surface area of the catchment must be taken to account.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Pesticide catchment</term>
</item>
<item>
<term>GIS artificial network</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000-04-27">Modified</change>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C636FED0878A3EFB1BFC94957928D5C96693ED65/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>HYDROL</jid>
<aid>4060</aid>
<ce:pii>S0022-1694(00)00288-2</ce:pii>
<ce:doi>10.1016/S0022-1694(00)00288-2</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>F</ce:given-name>
<ce:surname>Colin</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>francois.colin@teledetection.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>C</ce:given-name>
<ce:surname>Puech</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:e-address>christian.puech@teledetection.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>G</ce:given-name>
<ce:surname>de Marsily</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:e-address>gdm@ccr.jussieu.fr</ce:e-address>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>UMR “Structure et Fonctionement des Systèmes Hydriques Continentaux”, Université P. et M. Curie 4, Pl. Jussieu 75252, Paris Cedex 05, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +33-4-6754-8700</ce:text>
</ce:correspondence>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>Fax: +33-1-44-27-51-25.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="5" month="10" year="1999"></ce:date-received>
<ce:date-revised day="27" month="4" year="2000"></ce:date-revised>
<ce:date-accepted day="19" month="6" year="2000"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>This paper puts forward a methodology permitting the identification of farming plots contributing to the pollution of surface water in order to define the zones most at risk from pesticide pollution. We worked at the scale of the small agricultural catchment (0.2–7.5
<ce:hsp sp="0.25"></ce:hsp>
km
<ce:sup>2</ce:sup>
) as it represents the appropriate level of organisation for agricultural land. The hypothesis tested was: the farther a field undergoing a pesticide treatment is from a channel network, the lower its impact on pollution at the catchment outlet.</ce:simple-para>
<ce:simple-para>The study area, the Sousson catchment (120
<ce:hsp sp="0.25"></ce:hsp>
km
<ce:sup>2</ce:sup>
, Gers, France), has a “herring bone” structure: 50 independent tributaries supply the main drain. Pesticide sales show that atrazine is the most frequently used compound although it is only used for treating maize plots and that its application rate is constant. In two winter inter-storm measurement exercises, triazine flux values were collected at about 30 independent sub-basin outlets.</ce:simple-para>
<ce:simple-para>The contributory areas are defined, with the aid of a GIS, as different strips around the channel network. The correlation between plots under maize in contributory zones and triazine flux at related sub-basin outlets is studied by using non-parametric and linear correlation coefficients. Finally, the most pertinent contributory zone is associated with the best correlation level.</ce:simple-para>
<ce:simple-para>A catchment typology, based on a slope criterion, allows us to conclude that in steep slope catchments, the contributory area is best defined as a 50
<ce:hsp sp="0.25"></ce:hsp>
m wide strip around the channel network. In flat zones, the agricultural drainage network is particularly well developed: artificial drains extend the channel network extracted from the 1/25.000 scale topographic map, and the total surface area of the catchment must be taken to account.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword" xml:lang="en">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Pesticide catchment</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>GIS artificial network</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Relations between triazine flux, catchment topography and distance between maize fields and the drainage network</title>
</titleInfo>
<name type="personal">
<namePart type="given">F</namePart>
<namePart type="family">Colin</namePart>
<affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</affiliation>
<affiliation>Corresponding author. Tel.: +33-4-6754-8700</affiliation>
<affiliation>E-mail: francois.colin@teledetection.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Puech</namePart>
<affiliation>UMR “Systèmes et Structures Spattiaux”, Cemagref-ENGREF 500, rue J.F. Breton 34093, Montpellier Cedex 05, France</affiliation>
<affiliation>E-mail: christian.puech@teledetection.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">de Marsily</namePart>
<affiliation>UMR “Structure et Fonctionement des Systèmes Hydriques Continentaux”, Université P. et M. Curie 4, Pl. Jussieu 75252, Paris Cedex 05, France</affiliation>
<affiliation>1 Fax: +33-1-44-27-51-25.</affiliation>
<affiliation>E-mail: gdm@ccr.jussieu.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<dateModified encoding="w3cdtf">2000-04-27</dateModified>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">This paper puts forward a methodology permitting the identification of farming plots contributing to the pollution of surface water in order to define the zones most at risk from pesticide pollution. We worked at the scale of the small agricultural catchment (0.2–7.5km2) as it represents the appropriate level of organisation for agricultural land. The hypothesis tested was: the farther a field undergoing a pesticide treatment is from a channel network, the lower its impact on pollution at the catchment outlet. The study area, the Sousson catchment (120km2, Gers, France), has a “herring bone” structure: 50 independent tributaries supply the main drain. Pesticide sales show that atrazine is the most frequently used compound although it is only used for treating maize plots and that its application rate is constant. In two winter inter-storm measurement exercises, triazine flux values were collected at about 30 independent sub-basin outlets. The contributory areas are defined, with the aid of a GIS, as different strips around the channel network. The correlation between plots under maize in contributory zones and triazine flux at related sub-basin outlets is studied by using non-parametric and linear correlation coefficients. Finally, the most pertinent contributory zone is associated with the best correlation level. A catchment typology, based on a slope criterion, allows us to conclude that in steep slope catchments, the contributory area is best defined as a 50m wide strip around the channel network. In flat zones, the agricultural drainage network is particularly well developed: artificial drains extend the channel network extracted from the 1/25.000 scale topographic map, and the total surface area of the catchment must be taken to account.</abstract>
<note type="content">Fig. 1: Sousson catchment location map, Gers region, France.</note>
<note type="content">Fig. 2: Hydrographic network (topographic 1/25.000 map) and subcatchments, parcel limits and land-cover (example of maize plots).</note>
<note type="content">Fig. 3: Water flow at the outlet of the Sousson catchment and sampling period: (a) December 1997; (b) March 1998.</note>
<note type="content">Fig. 4: Triazine flows measured at studied catchment outlet (December 1997 and March 1998).</note>
<note type="content">Fig. 5: Space partition around the channel network, contributing maize area.</note>
<note type="content">Fig. 6: Basin classification according to the slope criterion Islope.</note>
<note type="content">Fig. 7: IGN 1/25.000 and active hydrographic network observed in the field.</note>
<note type="content">Table 1: Water flow, triazine concentration and triazine flow measurements</note>
<note type="content">Table 2: Variations between dates in a sampling period (CV: Coefficient of variation=Standard deviation/Arithmetic mean)</note>
<note type="content">Table 3: Correlation coefficients between triazine flow and maize contributing area defined by an efficiency threshold. Whole set of basins ((0.13): confidence level)</note>
<note type="content">Table 4: Correlation coefficients between triazine flow and maize contributing surfaces defined by an efficiency threshold. Downstream basins ((0.13): confidence level)</note>
<note type="content">Table 6: Correlation between maize areas depending on d. Case of downstream catchments (correlation is expressed by the linear correlation coefficient r)</note>
<note type="content">Table 5: Correlation coefficients between triazine flow and maize contributing area defined by an efficiency threshold, Upstream basins ((0.13%): confidence level)</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Pesticide catchment</topic>
<topic>GIS artificial network</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Hydrology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>HYDROL</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">20000930</dateIssued>
</originInfo>
<identifier type="ISSN">0022-1694</identifier>
<identifier type="PII">S0022-1694(00)X0097-2</identifier>
<part>
<date>20000930</date>
<detail type="volume">
<number>236</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3–4</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>139</start>
<end>260</end>
</extent>
<extent unit="pages">
<start>139</start>
<end>152</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">C636FED0878A3EFB1BFC94957928D5C96693ED65</identifier>
<identifier type="DOI">10.1016/S0022-1694(00)00288-2</identifier>
<identifier type="PII">S0022-1694(00)00288-2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2000</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001006 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001006 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C636FED0878A3EFB1BFC94957928D5C96693ED65
   |texte=   Relations between triazine flux, catchment topography and distance between maize fields and the drainage network
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024