Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan

Identifieur interne : 000E34 ( Istex/Corpus ); précédent : 000E33; suivant : 000E35

Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan

Auteurs : Ariel C. Blanco ; Kazuo Nadaoka ; Takahiro Yamamoto ; Koichi Kinjo

Source :

RBID : ISTEX:ABB69A450B76007F1FAE1F848DB4AAF624069EC8

English descriptors

Abstract

Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3−‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3−‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3−‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3−‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/hyp.7685

Links to Exploration step

ISTEX:ABB69A450B76007F1FAE1F848DB4AAF624069EC8

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
<author>
<name sortKey="Blanco, Ariel C" sort="Blanco, Ariel C" uniqKey="Blanco A" first="Ariel C." last="Blanco">Ariel C. Blanco</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nadaoka, Kazuo" sort="Nadaoka, Kazuo" uniqKey="Nadaoka K" first="Kazuo" last="Nadaoka">Kazuo Nadaoka</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Takahiro" sort="Yamamoto, Takahiro" uniqKey="Yamamoto T" first="Takahiro" last="Yamamoto">Takahiro Yamamoto</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kinjo, Koichi" sort="Kinjo, Koichi" uniqKey="Kinjo K" first="Koichi" last="Kinjo">Koichi Kinjo</name>
<affiliation>
<mods:affiliation>Department of Environment Sciences, Okinawa Prefectural Institute of Health and Environment, 2085 Ozato, Ozato, Nanjo, Okinawa, 901‐1202, Japan</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ABB69A450B76007F1FAE1F848DB4AAF624069EC8</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/hyp.7685</idno>
<idno type="url">https://api.istex.fr/document/ABB69A450B76007F1FAE1F848DB4AAF624069EC8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E34</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
<author>
<name sortKey="Blanco, Ariel C" sort="Blanco, Ariel C" uniqKey="Blanco A" first="Ariel C." last="Blanco">Ariel C. Blanco</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nadaoka, Kazuo" sort="Nadaoka, Kazuo" uniqKey="Nadaoka K" first="Kazuo" last="Nadaoka">Kazuo Nadaoka</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Takahiro" sort="Yamamoto, Takahiro" uniqKey="Yamamoto T" first="Takahiro" last="Yamamoto">Takahiro Yamamoto</name>
<affiliation>
<mods:affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kinjo, Koichi" sort="Kinjo, Koichi" uniqKey="Kinjo K" first="Koichi" last="Kinjo">Koichi Kinjo</name>
<affiliation>
<mods:affiliation>Department of Environment Sciences, Okinawa Prefectural Institute of Health and Environment, 2085 Ozato, Ozato, Nanjo, Okinawa, 901‐1202, Japan</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="ISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-08-30">2010-08-30</date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">18</biblScope>
<biblScope unit="page" from="2601">2601</biblScope>
<biblScope unit="page" to="2616">2616</biblScope>
</imprint>
<idno type="ISSN">0885-6087</idno>
</series>
<idno type="istex">ABB69A450B76007F1FAE1F848DB4AAF624069EC8</idno>
<idno type="DOI">10.1002/hyp.7685</idno>
<idno type="ArticleID">HYP7685</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0885-6087</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>agricultural watershed</term>
<term>hydrochemistry</term>
<term>nitrate</term>
<term>nitrogen</term>
<term>phosphorus</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3−‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3−‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3−‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3−‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Ariel C. Blanco</name>
<affiliations>
<json:string>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</json:string>
<json:string>Department of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kazuo Nadaoka</name>
<affiliations>
<json:string>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</json:string>
<json:string>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</json:string>
</affiliations>
</json:item>
<json:item>
<name>Takahiro Yamamoto</name>
<affiliations>
<json:string>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Koichi Kinjo</name>
<affiliations>
<json:string>Department of Environment Sciences, Okinawa Prefectural Institute of Health and Environment, 2085 Ozato, Ozato, Nanjo, Okinawa, 901‐1202, Japan</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hydrochemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nitrogen</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phosphorus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nitrate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>agricultural watershed</value>
</json:item>
</subject>
<articleId>
<json:string>HYP7685</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3−‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p > 0·01) and river discharge Q (r = 0·88, p > 0·01). In contrast, NO3−‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3−‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3−‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2170</abstractCharCount>
<pdfWordCount>8389</pdfWordCount>
<pdfCharCount>54117</pdfCharCount>
<pdfPageCount>16</pdfPageCount>
<abstractWordCount>307</abstractWordCount>
</qualityIndicators>
<title>Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>24</volume>
<publisherId>
<json:string>HYP</json:string>
</publisherId>
<pages>
<total>16</total>
<last>2616</last>
<first>2601</first>
</pages>
<issn>
<json:string>0885-6087</json:string>
</issn>
<issue>18</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1099-1085</json:string>
</eissn>
<title>Hydrological Processes</title>
<doi>
<json:string>10.1002/(ISSN)1099-1085</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/hyp.7685</json:string>
</doi>
<id>ABB69A450B76007F1FAE1F848DB4AAF624069EC8</id>
<score>0.037704695</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/ABB69A450B76007F1FAE1F848DB4AAF624069EC8/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/ABB69A450B76007F1FAE1F848DB4AAF624069EC8/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/ABB69A450B76007F1FAE1F848DB4AAF624069EC8/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2010 John Wiley & Sons, Ltd.</p>
</availability>
<date>2010</date>
</publicationStmt>
<notesStmt>
<note>The Japan Society for the Promotion of Science (JSPS)</note>
<note>Grant‐in‐Aid for Scientific Research (A) - No. 17206052; No. 18254003;</note>
<note>JSPS Core University Program and APN (Asia‐Pacific Network) - No. (ARCP2006‐08NMY‐Nadaoka);</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
<author xml:id="author-1">
<persName>
<forename type="first">Ariel C.</forename>
<surname>Blanco</surname>
</persName>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<affiliation>Department of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Kazuo</forename>
<surname>Nadaoka</surname>
</persName>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Takahiro</forename>
<surname>Yamamoto</surname>
</persName>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Koichi</forename>
<surname>Kinjo</surname>
</persName>
<affiliation>Department of Environment Sciences, Okinawa Prefectural Institute of Health and Environment, 2085 Ozato, Ozato, Nanjo, Okinawa, 901‐1202, Japan</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Hydrological Processes</title>
<title level="j" type="abbrev">Hydrol. Process.</title>
<idno type="pISSN">0885-6087</idno>
<idno type="eISSN">1099-1085</idno>
<idno type="DOI">10.1002/(ISSN)1099-1085</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-08-30"></date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">18</biblScope>
<biblScope unit="page" from="2601">2601</biblScope>
<biblScope unit="page" to="2616">2616</biblScope>
</imprint>
</monogr>
<idno type="istex">ABB69A450B76007F1FAE1F848DB4AAF624069EC8</idno>
<idno type="DOI">10.1002/hyp.7685</idno>
<idno type="ArticleID">HYP7685</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3−‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3−‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3−‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3−‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>hydrochemistry</term>
</item>
<item>
<term>nitrogen</term>
</item>
<item>
<term>phosphorus</term>
</item>
<item>
<term>nitrate</term>
</item>
<item>
<term>agricultural watershed</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-11-08">Received</change>
<change when="2010-03-09">Registration</change>
<change when="2010-08-30">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/ABB69A450B76007F1FAE1F848DB4AAF624069EC8/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1085</doi>
<issn type="print">0885-6087</issn>
<issn type="electronic">1099-1085</issn>
<idGroup>
<id type="product" value="HYP"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="HYDROLOGICAL PROCESSES">Hydrological Processes</title>
<title type="short">Hydrol. Process.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="180">
<doi origin="wiley" registered="yes">10.1002/hyp.v24:18</doi>
<numberingGroup>
<numbering type="journalVolume" number="24">24</numbering>
<numbering type="journalIssue">18</numbering>
</numberingGroup>
<coverDate startDate="2010-08-30">30 August 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="80" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/hyp.7685</doi>
<idGroup>
<id type="unit" value="HYP7685"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="16"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-11-08"></event>
<event type="manuscriptAccepted" date="2010-03-09"></event>
<event type="firstOnline" date="2010-04-26"></event>
<event type="publishedOnlineFinalForm" date="2010-08-05"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2010-04-26"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.25 mode:FullText source:FullText result:FullText mathml2tex" date="2010-10-27"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">2601</numbering>
<numbering type="pageLast">2616</numbering>
</numberingGroup>
<correspondenceTo>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HYP.HYP7685.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="34"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
<title type="short" xml:lang="en">DYNAMIC EVOLUTION OF NUTRIENT DISCHARGE</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Ariel C.</givenNames>
<familyName>Blanco</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Kazuo</givenNames>
<familyName>Nadaoka</familyName>
</personName>
<contactDetails>
<email>nadaoka@mei.titech.ac.jp</email>
</contactDetails>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Takahiro</givenNames>
<familyName>Yamamoto</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Koichi</givenNames>
<familyName>Kinjo</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="JP" type="organization">
<unparsedAffiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="PH" type="organization">
<unparsedAffiliation>Department of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="JP" type="organization">
<unparsedAffiliation>Department of Environment Sciences, Okinawa Prefectural Institute of Health and Environment, 2085 Ozato, Ozato, Nanjo, Okinawa, 901‐1202, Japan</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">hydrochemistry</keyword>
<keyword xml:id="kwd2">nitrogen</keyword>
<keyword xml:id="kwd3">phosphorus</keyword>
<keyword xml:id="kwd4">nitrate</keyword>
<keyword xml:id="kwd5">agricultural watershed</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>The Japan Society for the Promotion of Science (JSPS)</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Grant‐in‐Aid for Scientific Research (A)</fundingAgency>
<fundingNumber>17206052</fundingNumber>
<fundingNumber>18254003</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>JSPS Core University Program and APN (Asia‐Pacific Network)</fundingAgency>
<fundingNumber>(ARCP2006‐08NMY‐Nadaoka)</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef.
<i>In situ</i>
nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO
<sub>3</sub>
<sup></sup>
‐N and PO
<sub>4</sub>
<sup>3−</sup>
‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (
<i>r</i>
= 0·94,
<i>p</i>
< 0·01) and river discharge
<i>Q</i>
(
<i>r</i>
= 0·88,
<i>p</i>
< 0·01). In contrast, NO
<sub>3</sub>
<sup></sup>
‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l
<sup>−1</sup>
) during flood events. When base flow starts to dominate afterwards, NO
<sub>3</sub>
<sup></sup>
‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO
<sub>3</sub>
<sup></sup>
‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>DYNAMIC EVOLUTION OF NUTRIENT DISCHARGE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ariel C.</namePart>
<namePart type="family">Blanco</namePart>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<affiliation>Department of Geodetic Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazuo</namePart>
<namePart type="family">Nadaoka</namePart>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan.===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takahiro</namePart>
<namePart type="family">Yamamoto</namePart>
<affiliation>Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, 2‐12‐1 O‐okayama, Meguro‐ku, Tokyo 152‐8552, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichi</namePart>
<namePart type="family">Kinjo</namePart>
<affiliation>Department of Environment Sciences, Okinawa Prefectural Institute of Health and Environment, 2085 Ozato, Ozato, Nanjo, Okinawa, 901‐1202, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-08-30</dateIssued>
<dateCaptured encoding="w3cdtf">2008-11-08</dateCaptured>
<dateValid encoding="w3cdtf">2010-03-09</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="tables">1</extent>
<extent unit="references">34</extent>
</physicalDescription>
<abstract lang="en">Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3−‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3−‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3−‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3−‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.</abstract>
<note type="funding">The Japan Society for the Promotion of Science (JSPS)</note>
<note type="funding">Grant‐in‐Aid for Scientific Research (A) - No. 17206052; No. 18254003; </note>
<note type="funding">JSPS Core University Program and APN (Asia‐Pacific Network) - No. (ARCP2006‐08NMY‐Nadaoka); </note>
<subject lang="en">
<genre>keywords</genre>
<topic>hydrochemistry</topic>
<topic>nitrogen</topic>
<topic>phosphorus</topic>
<topic>nitrate</topic>
<topic>agricultural watershed</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Hydrological Processes</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hydrol. Process.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0885-6087</identifier>
<identifier type="eISSN">1099-1085</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1085</identifier>
<identifier type="PublisherID">HYP</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>2601</start>
<end>2616</end>
<total>16</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">ABB69A450B76007F1FAE1F848DB4AAF624069EC8</identifier>
<identifier type="DOI">10.1002/hyp.7685</identifier>
<identifier type="ArticleID">HYP7685</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:ABB69A450B76007F1FAE1F848DB4AAF624069EC8
   |texte=   Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024