Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach

Identifieur interne : 000E30 ( Istex/Corpus ); précédent : 000E29; suivant : 000E31

Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach

Auteurs : Veronika Braunisch ; Gernot Segelbacher ; Alexandre H. Hirzel

Source :

RBID : ISTEX:3285E1264D9F1D96E93CDC6513C7A8366D4A33CE

English descriptors

Abstract

Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area‐wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter‐individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within‐population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.

Url:
DOI: 10.1111/j.1365-294X.2010.04703.x

Links to Exploration step

ISTEX:3285E1264D9F1D96E93CDC6513C7A8366D4A33CE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
<author>
<name sortKey="Braunisch, Veronika" sort="Braunisch, Veronika" uniqKey="Braunisch V" first="Veronika" last="Braunisch">Veronika Braunisch</name>
<affiliation>
<mods:affiliation>Forest Research Institute of Baden‐Wuerttemberg FVA, Wonnhaldestr. 4, D‐79100 Freiburg, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Conservation Biology, Institute of Ecology and Evolution, University of Bern, CH‐3012 Bern, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Segelbacher, Gernot" sort="Segelbacher, Gernot" uniqKey="Segelbacher G" first="Gernot" last="Segelbacher">Gernot Segelbacher</name>
<affiliation>
<mods:affiliation>Department of Wildlife Ecology and Management, Albert‐Ludwigs University Freiburg, Tennenbacher Strasse 4, D‐79106 Freiburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirzel, Alexandre H" sort="Hirzel, Alexandre H" uniqKey="Hirzel A" first="Alexandre H." last="Hirzel">Alexandre H. Hirzel</name>
<affiliation>
<mods:affiliation>Centre Informatique, University of Lausanne, CH‐1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3285E1264D9F1D96E93CDC6513C7A8366D4A33CE</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1111/j.1365-294X.2010.04703.x</idno>
<idno type="url">https://api.istex.fr/document/3285E1264D9F1D96E93CDC6513C7A8366D4A33CE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E30</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
<author>
<name sortKey="Braunisch, Veronika" sort="Braunisch, Veronika" uniqKey="Braunisch V" first="Veronika" last="Braunisch">Veronika Braunisch</name>
<affiliation>
<mods:affiliation>Forest Research Institute of Baden‐Wuerttemberg FVA, Wonnhaldestr. 4, D‐79100 Freiburg, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Conservation Biology, Institute of Ecology and Evolution, University of Bern, CH‐3012 Bern, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Segelbacher, Gernot" sort="Segelbacher, Gernot" uniqKey="Segelbacher G" first="Gernot" last="Segelbacher">Gernot Segelbacher</name>
<affiliation>
<mods:affiliation>Department of Wildlife Ecology and Management, Albert‐Ludwigs University Freiburg, Tennenbacher Strasse 4, D‐79106 Freiburg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hirzel, Alexandre H" sort="Hirzel, Alexandre H" uniqKey="Hirzel A" first="Alexandre H." last="Hirzel">Alexandre H. Hirzel</name>
<affiliation>
<mods:affiliation>Centre Informatique, University of Lausanne, CH‐1015 Lausanne, Switzerland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Ecology</title>
<idno type="ISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-09">2010-09</date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">17</biblScope>
<biblScope unit="page" from="3664">3664</biblScope>
<biblScope unit="page" to="3678">3678</biblScope>
</imprint>
<idno type="ISSN">0962-1083</idno>
</series>
<idno type="istex">3285E1264D9F1D96E93CDC6513C7A8366D4A33CE</idno>
<idno type="DOI">10.1111/j.1365-294X.2010.04703.x</idno>
<idno type="ArticleID">MEC4703</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0962-1083</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Tetrao urogallus</term>
<term>capercaillie</term>
<term>dispersal corridors</term>
<term>habitat connectivity</term>
<term>landscape permeability</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area‐wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter‐individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within‐population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>VERONIKA BRAUNISCH</name>
<affiliations>
<json:string>Forest Research Institute of Baden‐Wuerttemberg FVA, Wonnhaldestr. 4, D‐79100 Freiburg, Germany</json:string>
<json:string>Conservation Biology, Institute of Ecology and Evolution, University of Bern, CH‐3012 Bern, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>GERNOT SEGELBACHER</name>
<affiliations>
<json:string>Department of Wildlife Ecology and Management, Albert‐Ludwigs University Freiburg, Tennenbacher Strasse 4, D‐79106 Freiburg, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>ALEXANDRE H. HIRZEL</name>
<affiliations>
<json:string>Centre Informatique, University of Lausanne, CH‐1015 Lausanne, Switzerland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>capercaillie</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dispersal corridors</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>habitat connectivity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>landscape permeability</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Tetrao urogallus</value>
</json:item>
</subject>
<articleId>
<json:string>MEC4703</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area‐wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter‐individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within‐population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 793.701 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1897</abstractCharCount>
<pdfWordCount>8234</pdfWordCount>
<pdfCharCount>54154</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>255</abstractWordCount>
</qualityIndicators>
<title>Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>19</volume>
<publisherId>
<json:string>MEC</json:string>
</publisherId>
<pages>
<total>4</total>
<last>3678</last>
<first>3664</first>
</pages>
<issn>
<json:string>0962-1083</json:string>
</issn>
<issue>17</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-294X</json:string>
</eissn>
<title>Molecular Ecology</title>
<doi>
<json:string>10.1111/(ISSN)1365-294X</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>evolutionary biology</json:string>
<json:string>ecology</json:string>
<json:string>biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>evolutionary biology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1111/j.1365-294X.2010.04703.x</json:string>
</doi>
<id>3285E1264D9F1D96E93CDC6513C7A8366D4A33CE</id>
<score>0.037704695</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3285E1264D9F1D96E93CDC6513C7A8366D4A33CE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3285E1264D9F1D96E93CDC6513C7A8366D4A33CE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3285E1264D9F1D96E93CDC6513C7A8366D4A33CE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2010 Blackwell Publishing Ltd</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
<author xml:id="author-1">
<persName>
<forename type="first">VERONIKA</forename>
<surname>BRAUNISCH</surname>
</persName>
<affiliation>Forest Research Institute of Baden‐Wuerttemberg FVA, Wonnhaldestr. 4, D‐79100 Freiburg, Germany</affiliation>
<affiliation>Conservation Biology, Institute of Ecology and Evolution, University of Bern, CH‐3012 Bern, Switzerland</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">GERNOT</forename>
<surname>SEGELBACHER</surname>
</persName>
<affiliation>Department of Wildlife Ecology and Management, Albert‐Ludwigs University Freiburg, Tennenbacher Strasse 4, D‐79106 Freiburg, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">ALEXANDRE H.</forename>
<surname>HIRZEL</surname>
</persName>
<affiliation>Centre Informatique, University of Lausanne, CH‐1015 Lausanne, Switzerland</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Molecular Ecology</title>
<idno type="pISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<idno type="DOI">10.1111/(ISSN)1365-294X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-09"></date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">17</biblScope>
<biblScope unit="page" from="3664">3664</biblScope>
<biblScope unit="page" to="3678">3678</biblScope>
</imprint>
</monogr>
<idno type="istex">3285E1264D9F1D96E93CDC6513C7A8366D4A33CE</idno>
<idno type="DOI">10.1111/j.1365-294X.2010.04703.x</idno>
<idno type="ArticleID">MEC4703</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area‐wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter‐individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within‐population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>capercaillie</term>
</item>
<item>
<term>dispersal corridors</term>
</item>
<item>
<term>habitat connectivity</term>
</item>
<item>
<term>landscape permeability</term>
</item>
<item>
<term>Tetrao urogallus</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-09">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3285E1264D9F1D96E93CDC6513C7A8366D4A33CE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-294X</doi>
<issn type="print">0962-1083</issn>
<issn type="electronic">1365-294X</issn>
<idGroup>
<id type="product" value="MEC"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MOLECULAR ECOLOGY">Molecular Ecology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="09117">
<doi origin="wiley">10.1111/mec.2010.19.issue-17</doi>
<titleGroup>
<title type="specialIssueTitle">SPECIAL ISSUE ON LANDSCAPE GENETICS</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="19">19</numbering>
<numbering type="journalIssue">17</numbering>
</numberingGroup>
<coverDate startDate="2010-09">September 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="13" status="forIssue">
<doi origin="wiley">10.1111/j.1365-294X.2010.04703.x</doi>
<idGroup>
<id type="unit" value="MEC4703"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">FUNCTIONAL CONNECTIVITY AND LANDSCAPE RESISTANCE TO GENE FLOW</title>
</titleGroup>
<copyright>© 2010 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4 mode:FullText source:FullText result:FullText" date="2010-12-14"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2010-08-13"></event>
<event type="publishedOnlineFinalForm" date="2010-08-25"></event>
<event type="firstOnline" date="2010-08-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="3664">3664</numbering>
<numbering type="pageLast" number="3678">3678</numbering>
</numberingGroup>
<correspondenceTo>Veronika Braunisch, Fax: +49 761 4018 497; E‐mail:
<email>veronika.braunisch@iee.unibe.ch</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MEC.MEC4703.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 26 January 2010; revision received 8 April 2010; accepted 22 April 2010</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="4"></count>
</countGroup>
<titleGroup>
<title type="main">Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
<title type="shortAuthors">V. BRAUNISCH, G. SEGELBACHER AND A. H. HIRZEL</title>
<title type="short">MODELLING LANDSCAPE CONNECTIVITY FROM GENETIC DATA</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2">
<personName>
<givenNames>VERONIKA</givenNames>
<familyName>BRAUNISCH</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a3">
<personName>
<givenNames>GERNOT</givenNames>
<familyName>SEGELBACHER</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a4">
<personName>
<givenNames>ALEXANDRE H.</givenNames>
<familyName>HIRZEL</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE">
<unparsedAffiliation>Forest Research Institute of Baden‐Wuerttemberg FVA, Wonnhaldestr. 4, D‐79100 Freiburg, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="CH">
<unparsedAffiliation>Conservation Biology, Institute of Ecology and Evolution, University of Bern, CH‐3012 Bern, Switzerland</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="DE">
<unparsedAffiliation>Department of Wildlife Ecology and Management, Albert‐Ludwigs University Freiburg, Tennenbacher Strasse 4, D‐79106 Freiburg, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="CH">
<unparsedAffiliation>Centre Informatique, University of Lausanne, CH‐1015 Lausanne, Switzerland</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">capercaillie</keyword>
<keyword xml:id="k2">dispersal corridors</keyword>
<keyword xml:id="k3">habitat connectivity</keyword>
<keyword xml:id="k4">landscape permeability</keyword>
<keyword xml:id="k5">
<i>Tetrao urogallus</i>
</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (
<i>Tetrao urogallus</i>
) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area‐wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter‐individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within‐population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>MODELLING LANDSCAPE CONNECTIVITY FROM GENETIC DATA</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">VERONIKA</namePart>
<namePart type="family">BRAUNISCH</namePart>
<affiliation>Forest Research Institute of Baden‐Wuerttemberg FVA, Wonnhaldestr. 4, D‐79100 Freiburg, Germany</affiliation>
<affiliation>Conservation Biology, Institute of Ecology and Evolution, University of Bern, CH‐3012 Bern, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GERNOT</namePart>
<namePart type="family">SEGELBACHER</namePart>
<affiliation>Department of Wildlife Ecology and Management, Albert‐Ludwigs University Freiburg, Tennenbacher Strasse 4, D‐79106 Freiburg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ALEXANDRE H.</namePart>
<namePart type="family">HIRZEL</namePart>
<affiliation>Centre Informatique, University of Lausanne, CH‐1015 Lausanne, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-09</dateIssued>
<edition>Received 26 January 2010; revision received 8 April 2010; accepted 22 April 2010</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="tables">4</extent>
</physicalDescription>
<abstract lang="en">Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area‐wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter‐individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within‐population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>capercaillie</topic>
<topic>dispersal corridors</topic>
<topic>habitat connectivity</topic>
<topic>landscape permeability</topic>
<topic>Tetrao urogallus</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Molecular Ecology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0962-1083</identifier>
<identifier type="eISSN">1365-294X</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-294X</identifier>
<identifier type="PublisherID">MEC</identifier>
<part>
<date>2010</date>
<detail type="title">
<title>SPECIAL ISSUE ON LANDSCAPE GENETICS</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>3664</start>
<end>3678</end>
<total>4</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3285E1264D9F1D96E93CDC6513C7A8366D4A33CE</identifier>
<identifier type="DOI">10.1111/j.1365-294X.2010.04703.x</identifier>
<identifier type="ArticleID">MEC4703</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3285E1264D9F1D96E93CDC6513C7A8366D4A33CE
   |texte=   Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024