Système d'information stratégique et agriculture (serveur d'exploration)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS

Identifieur interne : 000B74 ( Istex/Corpus ); précédent : 000B73; suivant : 000B75

INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS

Auteurs : R. Srinivasan ; J. G. Arnold

Source :

RBID : ISTEX:A90285BADE64D3B5C4E64772942045330483D4A4

English descriptors

Abstract

ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single‐event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous‐time, basin large‐scale water quality models, collecting and manipulating the input data are more time‐consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin‐scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.

Url:
DOI: 10.1111/j.1752-1688.1994.tb03304.x

Links to Exploration step

ISTEX:A90285BADE64D3B5C4E64772942045330483D4A4

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS</title>
<author>
<name sortKey="Srinivasan, R" sort="Srinivasan, R" uniqKey="Srinivasan R" first="R." last="Srinivasan">R. Srinivasan</name>
</author>
<author>
<name sortKey="Arnold, J G" sort="Arnold, J G" uniqKey="Arnold J" first="J. G." last="Arnold">J. G. Arnold</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A90285BADE64D3B5C4E64772942045330483D4A4</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1111/j.1752-1688.1994.tb03304.x</idno>
<idno type="url">https://api.istex.fr/document/A90285BADE64D3B5C4E64772942045330483D4A4/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B74</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS</title>
<author>
<name sortKey="Srinivasan, R" sort="Srinivasan, R" uniqKey="Srinivasan R" first="R." last="Srinivasan">R. Srinivasan</name>
</author>
<author>
<name sortKey="Arnold, J G" sort="Arnold, J G" uniqKey="Arnold J" first="J. G." last="Arnold">J. G. Arnold</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">JAWRA Journal of the American Water Resources Association</title>
<idno type="ISSN">1093-474X</idno>
<idno type="eISSN">1752-1688</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1994-06">1994-06</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="453">453</biblScope>
<biblScope unit="page" to="462">462</biblScope>
</imprint>
<idno type="ISSN">1093-474X</idno>
</series>
<idno type="istex">A90285BADE64D3B5C4E64772942045330483D4A4</idno>
<idno type="DOI">10.1111/j.1752-1688.1994.tb03304.x</idno>
<idno type="ArticleID">JAWR453</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1093-474X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Soil and Water Assessment Tool (SWAT</term>
<term>basin scale modeling</term>
<term>distributed parameter modeling</term>
<term>geographic information systems</term>
<term>natural resource databases</term>
<term>water quality</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single‐event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous‐time, basin large‐scale water quality models, collecting and manipulating the input data are more time‐consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin‐scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>R. Srinivasan</name>
</json:item>
<json:item>
<name>J. G. Arnold</name>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>geographic information systems</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>water quality</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>distributed parameter modeling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>natural resource databases</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Soil and Water Assessment Tool (SWAT</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>basin scale modeling</value>
</json:item>
</subject>
<articleId>
<json:string>JAWR453</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single‐event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous‐time, basin large‐scale water quality models, collecting and manipulating the input data are more time‐consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin‐scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.</abstract>
<qualityIndicators>
<score>7.6</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>588 x 783.36 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1229</abstractCharCount>
<pdfWordCount>5191</pdfWordCount>
<pdfCharCount>32686</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>175</abstractWordCount>
</qualityIndicators>
<title>INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>30</volume>
<publisherId>
<json:string>JAWR</json:string>
</publisherId>
<pages>
<total>10</total>
<last>462</last>
<first>453</first>
</pages>
<issn>
<json:string>1093-474X</json:string>
</issn>
<issue>3</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1752-1688</json:string>
</eissn>
<title>JAWRA Journal of the American Water Resources Association</title>
<doi>
<json:string>10.1111/(ISSN)1752-1688</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>water resources</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>engineering, environmental</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>environmental engineering</json:string>
</scienceMetrix>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1111/j.1752-1688.1994.tb03304.x</json:string>
</doi>
<id>A90285BADE64D3B5C4E64772942045330483D4A4</id>
<score>0.04882752</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A90285BADE64D3B5C4E64772942045330483D4A4/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A90285BADE64D3B5C4E64772942045330483D4A4/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A90285BADE64D3B5C4E64772942045330483D4A4/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>1994</date>
</publicationStmt>
<notesStmt>
<note type="content">*Paper No. 93123 of the Water Resources Bulletin. Discussions are open until February 1, 1995.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS</title>
<author xml:id="author-1">
<persName>
<forename type="first">R.</forename>
<surname>Srinivasan</surname>
</persName>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">J. G.</forename>
<surname>Arnold</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">JAWRA Journal of the American Water Resources Association</title>
<idno type="pISSN">1093-474X</idno>
<idno type="eISSN">1752-1688</idno>
<idno type="DOI">10.1111/(ISSN)1752-1688</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1994-06"></date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="453">453</biblScope>
<biblScope unit="page" to="462">462</biblScope>
</imprint>
</monogr>
<idno type="istex">A90285BADE64D3B5C4E64772942045330483D4A4</idno>
<idno type="DOI">10.1111/j.1752-1688.1994.tb03304.x</idno>
<idno type="ArticleID">JAWR453</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1994</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single‐event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous‐time, basin large‐scale water quality models, collecting and manipulating the input data are more time‐consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin‐scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>geographic information systems</term>
</item>
<item>
<term>water quality</term>
</item>
<item>
<term>distributed parameter modeling</term>
</item>
<item>
<term>natural resource databases</term>
</item>
<item>
<term>Soil and Water Assessment Tool (SWAT</term>
</item>
<item>
<term>basin scale modeling</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1994-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A90285BADE64D3B5C4E64772942045330483D4A4/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1752-1688</doi>
<issn type="print">1093-474X</issn>
<issn type="electronic">1752-1688</issn>
<idGroup>
<id type="product" value="JAWR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF AMERICAN WATER RESOURCES ASSOCIATION">JAWRA Journal of the American Water Resources Association</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="06003">
<doi origin="wiley">10.1111/jawr.1994.30.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="30">30</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="1994-06">June 1994</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0045300" status="forIssue">
<doi origin="wiley">10.1111/j.1752-1688.1994.tb03304.x</doi>
<idGroup>
<id type="unit" value="JAWR453"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<eventGroup>
<event type="firstOnline" date="2007-06-08"></event>
<event type="publishedOnlineFinalForm" date="2007-06-08"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.5 mode:FullText source:HeaderRef result:HeaderRef" date="2010-04-07"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-28"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="453">453</numbering>
<numbering type="pageLast" number="462">462</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JAWR.JAWR453.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="referenceTotal" number="25"></count>
<count type="linksCrossRef" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS
<link href="#fn1">
<sup>1</sup>
</link>
</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1">
<personName>
<givenNames>R.</givenNames>
<familyName>Srinivasan</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" noteRef="#fn2">
<personName>
<givenNames>J. G.</givenNames>
<familyName>Arnold</familyName>
</personName>
</creator>
</creators>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">geographic information systems</keyword>
<keyword xml:id="k2">water quality</keyword>
<keyword xml:id="k3">distributed parameter modeling</keyword>
<keyword xml:id="k4">natural resource databases</keyword>
<keyword xml:id="k5">Soil and Water Assessment Tool (SWAT</keyword>
<keyword xml:id="k6">basin scale modeling</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>ABSTRACT: </b>
Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single‐event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous‐time, basin large‐scale water quality models, collecting and manipulating the input data are more time‐consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin‐scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<label>1</label>
<p>Paper No. 93123 of the
<i>Water Resources Bulletin</i>
. Discussions are open until February 1, 1995.</p>
</note>
<note xml:id="fn2">
<label>2</label>
<p>Respectively, Agricultural Engineer and Associate Research Scientist, Texas Agricultural Experiment Station, Blackland Research Center, Temple, Texas 76502; and Agricultural Engineer, USDA‐Agricultural Research Service, Grassland, Soil and Water Research Lab., Temple, Texas 76502.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS1</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Srinivasan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. G.</namePart>
<namePart type="family">Arnold</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1994-06</dateIssued>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="references">25</extent>
</physicalDescription>
<abstract>ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single‐event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous‐time, basin large‐scale water quality models, collecting and manipulating the input data are more time‐consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin‐scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.</abstract>
<note type="content">*Paper No. 93123 of the Water Resources Bulletin. Discussions are open until February 1, 1995.</note>
<subject lang="en">
<genre>keywords</genre>
<topic>geographic information systems</topic>
<topic>water quality</topic>
<topic>distributed parameter modeling</topic>
<topic>natural resource databases</topic>
<topic>Soil and Water Assessment Tool (SWAT</topic>
<topic>basin scale modeling</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>JAWRA Journal of the American Water Resources Association</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1093-474X</identifier>
<identifier type="eISSN">1752-1688</identifier>
<identifier type="DOI">10.1111/(ISSN)1752-1688</identifier>
<identifier type="PublisherID">JAWR</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>453</start>
<end>462</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A90285BADE64D3B5C4E64772942045330483D4A4</identifier>
<identifier type="DOI">10.1111/j.1752-1688.1994.tb03304.x</identifier>
<identifier type="ArticleID">JAWR453</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Agronomie/explor/SisAgriV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Agronomie
   |area=    SisAgriV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A90285BADE64D3B5C4E64772942045330483D4A4
   |texte=   INTEGRATION OF A BASIN‐SCALE WATER QUALITY MODEL WITH GIS
}}

Wicri

This area was generated with Dilib version V0.6.28.
Data generation: Wed Mar 29 00:06:34 2017. Site generation: Tue Mar 12 12:44:16 2024