Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

NEURONAL SUBSTRATES OF HAPTIC SHAPE ENCODING AND MATCHING : A FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY

Identifieur interne : 000A96 ( PascalFrancis/Curation ); précédent : 000A95; suivant : 000A97

NEURONAL SUBSTRATES OF HAPTIC SHAPE ENCODING AND MATCHING : A FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY

Auteurs : A. Miquee [France] ; C. Xerri [France] ; C. Rainville [Canada] ; J.-L. Anton [France] ; B. Nazarian [France] ; M. Roth [France] ; Y. Zennou-Azogui [France]

Source :

RBID : Pascal:08-0199437

Descripteurs français

English descriptors

Abstract

-We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (Sl) and secondary (Sll) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (Ml), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of Sl, Ml, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral prefrontal cortex, bilateral inferior parietal lobe, right Sll) suggesting their specific involvement during 2D geometrical shape matching.
pA  
A01 01  1    @0 0306-4522
A02 01      @0 NRSCDN
A03   1    @0 Neuroscience
A05       @2 152
A06       @2 1
A08 01  1  ENG  @1 NEURONAL SUBSTRATES OF HAPTIC SHAPE ENCODING AND MATCHING : A FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY
A11 01  1    @1 MIQUEE (A.)
A11 02  1    @1 XERRI (C.)
A11 03  1    @1 RAINVILLE (C.)
A11 04  1    @1 ANTON (J.-L.)
A11 05  1    @1 NAZARIAN (B.)
A11 06  1    @1 ROTH (M.)
A11 07  1    @1 ZENNOU-AZOGUI (Y.)
A14 01      @1 Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo @2 13331 Marseille @3 FRA @Z 1 aut. @Z 2 aut. @Z 7 aut.
A14 02      @1 Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 Avenue Vincent-d'Indy @2 Montréal, H2V2S9 @3 CAN @Z 3 aut.
A14 03      @1 Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre @2 13385 Marseille @3 FRA @Z 4 aut. @Z 5 aut. @Z 6 aut.
A20       @1 29-39
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 17194 @5 354000183286590040
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 08-0199437
A60       @1 P
A61       @0 A
A64 01  1    @0 Neuroscience
A66 01      @0 GBR
C01 01    ENG  @0 -We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (Sl) and secondary (Sll) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (Ml), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of Sl, Ml, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral prefrontal cortex, bilateral inferior parietal lobe, right Sll) suggesting their specific involvement during 2D geometrical shape matching.
C02 01  X    @0 002A25
C03 01  X  FRE  @0 Imagerie fonctionnelle @5 01
C03 01  X  ENG  @0 Functional imaging @5 01
C03 01  X  SPA  @0 Imaginería funcional @5 01
C03 02  X  FRE  @0 Imagerie RMN @5 02
C03 02  X  ENG  @0 Nuclear magnetic resonance imaging @5 02
C03 02  X  SPA  @0 Imaginería RMN @5 02
C03 03  X  FRE  @0 Encéphale @5 03
C03 03  X  ENG  @0 Encephalon @5 03
C03 03  X  SPA  @0 Encéfalo @5 03
C03 04  X  FRE  @0 Homme @5 54
C03 04  X  ENG  @0 Human @5 54
C03 04  X  SPA  @0 Hombre @5 54
C07 01  X  FRE  @0 Système nerveux central @5 20
C07 01  X  ENG  @0 Central nervous system @5 20
C07 01  X  SPA  @0 Sistema nervioso central @5 20
N21       @1 126
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0199437

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">NEURONAL SUBSTRATES OF HAPTIC SHAPE ENCODING AND MATCHING : A FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY</title>
<author>
<name sortKey="Miquee, A" sort="Miquee, A" uniqKey="Miquee A" first="A." last="Miquee">A. Miquee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo</s1>
<s2>13331 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Xerri, C" sort="Xerri, C" uniqKey="Xerri C" first="C." last="Xerri">C. Xerri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo</s1>
<s2>13331 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rainville, C" sort="Rainville, C" uniqKey="Rainville C" first="C." last="Rainville">C. Rainville</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 Avenue Vincent-d'Indy</s1>
<s2>Montréal, H2V2S9</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Anton, J L" sort="Anton, J L" uniqKey="Anton J" first="J.-L." last="Anton">J.-L. Anton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre</s1>
<s2>13385 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Nazarian, B" sort="Nazarian, B" uniqKey="Nazarian B" first="B." last="Nazarian">B. Nazarian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre</s1>
<s2>13385 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Roth, M" sort="Roth, M" uniqKey="Roth M" first="M." last="Roth">M. Roth</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre</s1>
<s2>13385 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zennou Azogui, Y" sort="Zennou Azogui, Y" uniqKey="Zennou Azogui Y" first="Y." last="Zennou-Azogui">Y. Zennou-Azogui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo</s1>
<s2>13331 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0199437</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0199437 INIST</idno>
<idno type="RBID">Pascal:08-0199437</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000967</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000A96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">NEURONAL SUBSTRATES OF HAPTIC SHAPE ENCODING AND MATCHING : A FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY</title>
<author>
<name sortKey="Miquee, A" sort="Miquee, A" uniqKey="Miquee A" first="A." last="Miquee">A. Miquee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo</s1>
<s2>13331 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Xerri, C" sort="Xerri, C" uniqKey="Xerri C" first="C." last="Xerri">C. Xerri</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo</s1>
<s2>13331 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Rainville, C" sort="Rainville, C" uniqKey="Rainville C" first="C." last="Rainville">C. Rainville</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 Avenue Vincent-d'Indy</s1>
<s2>Montréal, H2V2S9</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Anton, J L" sort="Anton, J L" uniqKey="Anton J" first="J.-L." last="Anton">J.-L. Anton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre</s1>
<s2>13385 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Nazarian, B" sort="Nazarian, B" uniqKey="Nazarian B" first="B." last="Nazarian">B. Nazarian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre</s1>
<s2>13385 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Roth, M" sort="Roth, M" uniqKey="Roth M" first="M." last="Roth">M. Roth</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre</s1>
<s2>13385 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Zennou Azogui, Y" sort="Zennou Azogui, Y" uniqKey="Zennou Azogui Y" first="Y." last="Zennou-Azogui">Y. Zennou-Azogui</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo</s1>
<s2>13331 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Neuroscience</title>
<title level="j" type="abbreviated">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Neuroscience</title>
<title level="j" type="abbreviated">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Encephalon</term>
<term>Functional imaging</term>
<term>Human</term>
<term>Nuclear magnetic resonance imaging</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Imagerie fonctionnelle</term>
<term>Imagerie RMN</term>
<term>Encéphale</term>
<term>Homme</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Homme</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">-We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (Sl) and secondary (Sll) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (Ml), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of Sl, Ml, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral prefrontal cortex, bilateral inferior parietal lobe, right Sll) suggesting their specific involvement during 2D geometrical shape matching.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0306-4522</s0>
</fA01>
<fA02 i1="01">
<s0>NRSCDN</s0>
</fA02>
<fA03 i2="1">
<s0>Neuroscience</s0>
</fA03>
<fA05>
<s2>152</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>NEURONAL SUBSTRATES OF HAPTIC SHAPE ENCODING AND MATCHING : A FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MIQUEE (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XERRI (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAINVILLE (C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ANTON (J.-L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NAZARIAN (B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ROTH (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZENNOU-AZOGUI (Y.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo</s1>
<s2>13331 Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, 90 Avenue Vincent-d'Indy</s1>
<s2>Montréal, H2V2S9</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre d'Imagerie par Résonnance Magnétique, Fonctionnelle de Marseille, CHU La Timone, 264 Rue St Pierre</s1>
<s2>13385 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>29-39</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17194</s2>
<s5>354000183286590040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0199437</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Neuroscience</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>-We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (Sl) and secondary (Sll) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (Ml), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of Sl, Ml, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral prefrontal cortex, bilateral inferior parietal lobe, right Sll) suggesting their specific involvement during 2D geometrical shape matching.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A25</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Imagerie fonctionnelle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Functional imaging</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Imaginería funcional</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Imagerie RMN</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nuclear magnetic resonance imaging</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Imaginería RMN</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Encéphale</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Encephalon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Encéfalo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Homme</s0>
<s5>54</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Human</s0>
<s5>54</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>54</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>20</s5>
</fC07>
<fN21>
<s1>126</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000A96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:08-0199437
   |texte=   NEURONAL SUBSTRATES OF HAPTIC SHAPE ENCODING AND MATCHING : A FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDY
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024