Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical field: A historical review of its application and contributions in wastewater sludge dewatering

Identifieur interne : 002696 ( PascalFrancis/Corpus ); précédent : 002695; suivant : 002697

Electrical field: A historical review of its application and contributions in wastewater sludge dewatering

Auteurs : Akrama Mahmoud ; Jérémy Olivier ; Jean Vaxelaire ; Andrew F. A. Hoadley

Source :

RBID : Pascal:10-0240126

Descripteurs français

English descriptors

Abstract

Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0043-1354
A02 01      @0 WATRAG
A03   1    @0 Water res. : (Oxf.)
A05       @2 44
A06       @2 8
A08 01  1  ENG  @1 Electrical field: A historical review of its application and contributions in wastewater sludge dewatering
A11 01  1    @1 MAHMOUD (Akrama)
A11 02  1    @1 OLIVIER (Jérémy)
A11 03  1    @1 VAXELAIRE (Jean)
A11 04  1    @1 HOADLEY (Andrew F. A.)
A14 01      @1 Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511 @2 64075 Pau @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Department of Chemical Engineering, Building 35, Clayton Campus, Monash University @2 Victoria 3800 @3 AUS @Z 4 aut.
A20       @1 2381-2407
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 8940A @5 354000182043890010
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 5 p.
A47 01  1    @0 10-0240126
A60       @1 P
A61       @0 A
A64 01  1    @0 Water research : (Oxford)
A66 01      @0 GBR
C01 01    ENG  @0 Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination.
C02 01  X    @0 001D16A
C02 02  X    @0 001D16B06
C03 01  X  FRE  @0 Eau usée @5 01
C03 01  X  ENG  @0 Waste water @5 01
C03 01  X  SPA  @0 Agua residual @5 01
C03 02  X  FRE  @0 Déshydratation @5 02
C03 02  X  ENG  @0 Dehydration @5 02
C03 02  X  SPA  @0 Deshidratación @5 02
C03 03  X  FRE  @0 Champ électrique @5 03
C03 03  X  ENG  @0 Electric field @5 03
C03 03  X  SPA  @0 Campo eléctrico @5 03
C03 04  X  FRE  @0 Electrocinétique @5 04
C03 04  X  ENG  @0 Electrokinetics @5 04
C03 04  X  SPA  @0 Electrocinética @5 04
C03 05  X  FRE  @0 Séparation solide liquide @5 05
C03 05  X  ENG  @0 Solid liquid separation @5 05
C03 05  X  SPA  @0 Separación sólido líquido @5 05
C03 06  X  FRE  @0 Consommation énergie @5 06
C03 06  X  ENG  @0 Energy consumption @5 06
C03 06  X  SPA  @0 Consumo energía @5 06
C03 07  X  FRE  @0 Industrie céramique @5 07
C03 07  X  ENG  @0 Ceramics industry @5 07
C03 07  X  SPA  @0 Industria cerámica @5 07
C03 08  X  FRE  @0 Particule fine @5 08
C03 08  X  ENG  @0 Fine particle @5 08
C03 08  X  SPA  @0 Partícula fina @5 08
C03 09  X  FRE  @0 Boue résiduaire @5 09
C03 09  X  ENG  @0 Sewage sludge @5 09
C03 09  X  SPA  @0 Lodo residual @5 09
C03 10  X  FRE  @0 Industrie pharmaceutique @5 10
C03 10  X  ENG  @0 Pharmaceutical industry @5 10
C03 10  X  SPA  @0 Industria farmacéutica @5 10
C03 11  X  FRE  @0 Industrie alimentaire @5 11
C03 11  X  ENG  @0 Food industry @5 11
C03 11  X  SPA  @0 Industria alimenticia @5 11
C03 12  X  FRE  @0 Suspension particule @5 12
C03 12  X  ENG  @0 Particle suspension @5 12
C03 12  X  SPA  @0 Suspensión partícula @5 12
C03 13  X  FRE  @0 Charge superficielle @5 13
C03 13  X  ENG  @0 Surface charge @5 13
C03 13  X  SPA  @0 Carga superficial @5 13
C03 14  X  FRE  @0 Charge électrique @5 14
C03 14  X  ENG  @0 Electric charge @5 14
C03 14  X  SPA  @0 Carga eléctrica @5 14
C03 15  X  FRE  @0 Electroosmose @5 15
C03 15  X  ENG  @0 Electroosmosis @5 15
C03 15  X  SPA  @0 Electro-osmosis @5 15
C03 16  X  FRE  @0 Analyse élémentaire @5 16
C03 16  X  ENG  @0 Elementary analysis @5 16
C03 16  X  SPA  @0 Análisis elemental @5 16
C03 17  X  FRE  @0 Milieu poreux @5 17
C03 17  X  ENG  @0 Porous medium @5 17
C03 17  X  SPA  @0 Medio poroso @5 17
C03 18  X  FRE  @0 Traitement déchet @5 35
C03 18  X  ENG  @0 Waste treatment @5 35
C03 18  X  SPA  @0 Tratamiento desperdicios @5 35
C03 19  X  FRE  @0 Pollution sol @5 36
C03 19  X  ENG  @0 Soil pollution @5 36
C03 19  X  SPA  @0 Polución suelo @5 36
C03 20  X  FRE  @0 Traitement électrochimique @5 37
C03 20  X  ENG  @0 Electrochemical treatment @5 37
C03 20  X  SPA  @0 Tratamiento electroquímico @5 37
C03 21  X  FRE  @0 Aérosol @5 38
C03 21  X  ENG  @0 Aerosols @5 38
C03 21  X  SPA  @0 Aerosol @5 38
C03 22  X  FRE  @0 Analyse chimique @5 39
C03 22  X  ENG  @0 Chemical analysis @5 39
C03 22  X  SPA  @0 Análisis químico @5 39
C03 23  X  FRE  @0 Pollution air @5 40
C03 23  X  ENG  @0 Air pollution @5 40
C03 23  X  SPA  @0 Contaminación aire @5 40
N21       @1 158
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0240126 INIST
ET : Electrical field: A historical review of its application and contributions in wastewater sludge dewatering
AU : MAHMOUD (Akrama); OLIVIER (Jérémy); VAXELAIRE (Jean); HOADLEY (Andrew F. A.)
AF : Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511/64075 Pau/France (1 aut., 2 aut., 3 aut.); Department of Chemical Engineering, Building 35, Clayton Campus, Monash University/Victoria 3800/Australie (4 aut.)
DT : Publication en série; Niveau analytique
SO : Water research : (Oxford); ISSN 0043-1354; Coden WATRAG; Royaume-Uni; Da. 2010; Vol. 44; No. 8; Pp. 2381-2407; Bibl. 5 p.
LA : Anglais
EA : Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination.
CC : 001D16A; 001D16B06
FD : Eau usée; Déshydratation; Champ électrique; Electrocinétique; Séparation solide liquide; Consommation énergie; Industrie céramique; Particule fine; Boue résiduaire; Industrie pharmaceutique; Industrie alimentaire; Suspension particule; Charge superficielle; Charge électrique; Electroosmose; Analyse élémentaire; Milieu poreux; Traitement déchet; Pollution sol; Traitement électrochimique; Aérosol; Analyse chimique; Pollution air
ED : Waste water; Dehydration; Electric field; Electrokinetics; Solid liquid separation; Energy consumption; Ceramics industry; Fine particle; Sewage sludge; Pharmaceutical industry; Food industry; Particle suspension; Surface charge; Electric charge; Electroosmosis; Elementary analysis; Porous medium; Waste treatment; Soil pollution; Electrochemical treatment; Aerosols; Chemical analysis; Air pollution
SD : Agua residual; Deshidratación; Campo eléctrico; Electrocinética; Separación sólido líquido; Consumo energía; Industria cerámica; Partícula fina; Lodo residual; Industria farmacéutica; Industria alimenticia; Suspensión partícula; Carga superficial; Carga eléctrica; Electro-osmosis; Análisis elemental; Medio poroso; Tratamiento desperdicios; Polución suelo; Tratamiento electroquímico; Aerosol; Análisis químico; Contaminación aire
LO : INIST-8940A.354000182043890010
ID : 10-0240126

Links to Exploration step

Pascal:10-0240126

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical field: A historical review of its application and contributions in wastewater sludge dewatering</title>
<author>
<name sortKey="Mahmoud, Akrama" sort="Mahmoud, Akrama" uniqKey="Mahmoud A" first="Akrama" last="Mahmoud">Akrama Mahmoud</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511</s1>
<s2>64075 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Olivier, Jeremy" sort="Olivier, Jeremy" uniqKey="Olivier J" first="Jérémy" last="Olivier">Jérémy Olivier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511</s1>
<s2>64075 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vaxelaire, Jean" sort="Vaxelaire, Jean" uniqKey="Vaxelaire J" first="Jean" last="Vaxelaire">Jean Vaxelaire</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511</s1>
<s2>64075 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hoadley, Andrew F A" sort="Hoadley, Andrew F A" uniqKey="Hoadley A" first="Andrew F. A." last="Hoadley">Andrew F. A. Hoadley</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Building 35, Clayton Campus, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0240126</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0240126 INIST</idno>
<idno type="RBID">Pascal:10-0240126</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002696</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Electrical field: A historical review of its application and contributions in wastewater sludge dewatering</title>
<author>
<name sortKey="Mahmoud, Akrama" sort="Mahmoud, Akrama" uniqKey="Mahmoud A" first="Akrama" last="Mahmoud">Akrama Mahmoud</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511</s1>
<s2>64075 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Olivier, Jeremy" sort="Olivier, Jeremy" uniqKey="Olivier J" first="Jérémy" last="Olivier">Jérémy Olivier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511</s1>
<s2>64075 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vaxelaire, Jean" sort="Vaxelaire, Jean" uniqKey="Vaxelaire J" first="Jean" last="Vaxelaire">Jean Vaxelaire</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511</s1>
<s2>64075 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hoadley, Andrew F A" sort="Hoadley, Andrew F A" uniqKey="Hoadley A" first="Andrew F. A." last="Hoadley">Andrew F. A. Hoadley</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Chemical Engineering, Building 35, Clayton Campus, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Water research : (Oxford)</title>
<title level="j" type="abbreviated">Water res. : (Oxf.)</title>
<idno type="ISSN">0043-1354</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Water research : (Oxford)</title>
<title level="j" type="abbreviated">Water res. : (Oxf.)</title>
<idno type="ISSN">0043-1354</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Air pollution</term>
<term>Ceramics industry</term>
<term>Chemical analysis</term>
<term>Dehydration</term>
<term>Electric charge</term>
<term>Electric field</term>
<term>Electrochemical treatment</term>
<term>Electrokinetics</term>
<term>Electroosmosis</term>
<term>Elementary analysis</term>
<term>Energy consumption</term>
<term>Fine particle</term>
<term>Food industry</term>
<term>Particle suspension</term>
<term>Pharmaceutical industry</term>
<term>Porous medium</term>
<term>Sewage sludge</term>
<term>Soil pollution</term>
<term>Solid liquid separation</term>
<term>Surface charge</term>
<term>Waste treatment</term>
<term>Waste water</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Eau usée</term>
<term>Déshydratation</term>
<term>Champ électrique</term>
<term>Electrocinétique</term>
<term>Séparation solide liquide</term>
<term>Consommation énergie</term>
<term>Industrie céramique</term>
<term>Particule fine</term>
<term>Boue résiduaire</term>
<term>Industrie pharmaceutique</term>
<term>Industrie alimentaire</term>
<term>Suspension particule</term>
<term>Charge superficielle</term>
<term>Charge électrique</term>
<term>Electroosmose</term>
<term>Analyse élémentaire</term>
<term>Milieu poreux</term>
<term>Traitement déchet</term>
<term>Pollution sol</term>
<term>Traitement électrochimique</term>
<term>Aérosol</term>
<term>Analyse chimique</term>
<term>Pollution air</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0043-1354</s0>
</fA01>
<fA02 i1="01">
<s0>WATRAG</s0>
</fA02>
<fA03 i2="1">
<s0>Water res. : (Oxf.)</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical field: A historical review of its application and contributions in wastewater sludge dewatering</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAHMOUD (Akrama)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OLIVIER (Jérémy)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VAXELAIRE (Jean)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOADLEY (Andrew F. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511</s1>
<s2>64075 Pau</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemical Engineering, Building 35, Clayton Campus, Monash University</s1>
<s2>Victoria 3800</s2>
<s3>AUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>2381-2407</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940A</s2>
<s5>354000182043890010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>5 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0240126</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Water research : (Oxford)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D16B06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Eau usée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Waste water</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Agua residual</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Déshydratation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Dehydration</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Deshidratación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Champ électrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electric field</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Campo eléctrico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Electrocinétique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrokinetics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Electrocinética</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Séparation solide liquide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Solid liquid separation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Separación sólido líquido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Consommation énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Energy consumption</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Consumo energía</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Industrie céramique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ceramics industry</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Industria cerámica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Particule fine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fine particle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Partícula fina</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Boue résiduaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Sewage sludge</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Lodo residual</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Industrie pharmaceutique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Pharmaceutical industry</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Industria farmacéutica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Industrie alimentaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Food industry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Industria alimenticia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Suspension particule</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Particle suspension</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Suspensión partícula</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Charge superficielle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Surface charge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Carga superficial</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Charge électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Electric charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Carga eléctrica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Electroosmose</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Electroosmosis</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Electro-osmosis</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Analyse élémentaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Elementary analysis</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Análisis elemental</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Milieu poreux</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Porous medium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Medio poroso</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Traitement déchet</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Waste treatment</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Tratamiento desperdicios</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Pollution sol</s0>
<s5>36</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Soil pollution</s0>
<s5>36</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Polución suelo</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Traitement électrochimique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Electrochemical treatment</s0>
<s5>37</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Tratamiento electroquímico</s0>
<s5>37</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>38</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>38</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>38</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Analyse chimique</s0>
<s5>39</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Chemical analysis</s0>
<s5>39</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Análisis químico</s0>
<s5>39</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>40</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>40</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>40</s5>
</fC03>
<fN21>
<s1>158</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0240126 INIST</NO>
<ET>Electrical field: A historical review of its application and contributions in wastewater sludge dewatering</ET>
<AU>MAHMOUD (Akrama); OLIVIER (Jérémy); VAXELAIRE (Jean); HOADLEY (Andrew F. A.)</AU>
<AF>Laboratoire de Thermique Energétique et Procédés (EAD 1932), ENSGTI, rue Jules Ferry, BP 7511/64075 Pau/France (1 aut., 2 aut., 3 aut.); Department of Chemical Engineering, Building 35, Clayton Campus, Monash University/Victoria 3800/Australie (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Water research : (Oxford); ISSN 0043-1354; Coden WATRAG; Royaume-Uni; Da. 2010; Vol. 44; No. 8; Pp. 2381-2407; Bibl. 5 p.</SO>
<LA>Anglais</LA>
<EA>Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination.</EA>
<CC>001D16A; 001D16B06</CC>
<FD>Eau usée; Déshydratation; Champ électrique; Electrocinétique; Séparation solide liquide; Consommation énergie; Industrie céramique; Particule fine; Boue résiduaire; Industrie pharmaceutique; Industrie alimentaire; Suspension particule; Charge superficielle; Charge électrique; Electroosmose; Analyse élémentaire; Milieu poreux; Traitement déchet; Pollution sol; Traitement électrochimique; Aérosol; Analyse chimique; Pollution air</FD>
<ED>Waste water; Dehydration; Electric field; Electrokinetics; Solid liquid separation; Energy consumption; Ceramics industry; Fine particle; Sewage sludge; Pharmaceutical industry; Food industry; Particle suspension; Surface charge; Electric charge; Electroosmosis; Elementary analysis; Porous medium; Waste treatment; Soil pollution; Electrochemical treatment; Aerosols; Chemical analysis; Air pollution</ED>
<SD>Agua residual; Deshidratación; Campo eléctrico; Electrocinética; Separación sólido líquido; Consumo energía; Industria cerámica; Partícula fina; Lodo residual; Industria farmacéutica; Industria alimenticia; Suspensión partícula; Carga superficial; Carga eléctrica; Electro-osmosis; Análisis elemental; Medio poroso; Tratamiento desperdicios; Polución suelo; Tratamiento electroquímico; Aerosol; Análisis químico; Contaminación aire</SD>
<LO>INIST-8940A.354000182043890010</LO>
<ID>10-0240126</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002696 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002696 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0240126
   |texte=   Electrical field: A historical review of its application and contributions in wastewater sludge dewatering
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024