Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating

Identifieur interne : 002426 ( PascalFrancis/Corpus ); précédent : 002425; suivant : 002427

Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating

Auteurs : Richard R. Lane ; Lászl L. Kiss ; Geraint F. Lewis ; Rodrigo A. Ibata ; Arnaud Siebert ; Timothy R. Bedding ; Péter Szekely ; Zoltán Balog ; Gyula M. Szabo

Source :

RBID : Pascal:10-0401164

Descripteurs français

English descriptors

Abstract

Globular clusters (GCs) have proven to be essential to our understanding of many important astrophysical phenomena. Here, we analyse spectroscopic observations of 10 halo GCs to determine their dark matter (DM) content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explains their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/Lv ? 5, therefore, we infer the observed dynamics do not require DM, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 ±0.1 km s-1 and 0.25 ± 0.15 km s-1, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0035-8711
A02 01      @0 MNRAA4
A03   1    @0 Mon. Not. R. Astron. Soc.
A05       @2 406
A06       @2 4
A08 01  1  ENG  @1 Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating
A11 01  1    @1 LANE (Richard R.)
A11 02  1    @1 KISS (László L.)
A11 03  1    @1 LEWIS (Geraint F.)
A11 04  1    @1 IBATA (Rodrigo A.)
A11 05  1    @1 SIEBERT (Arnaud)
A11 06  1    @1 BEDDING (Timothy R.)
A11 07  1    @1 SZEKELY (Péter)
A11 08  1    @1 BALOG (Zoltán)
A11 09  1    @1 SZABO (Gyula M.)
A14 01      @1 Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney @2 NSW 2006 @3 AUS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut.
A14 02      @1 Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67 @2 1525 Budapest @3 HUN @Z 2 aut. @Z 9 aut.
A14 03      @1 Observatoire Astronomique, Universite de Strasbourg, CNRS @2 67000 Strasbourg @3 FRA @Z 4 aut. @Z 5 aut.
A14 04      @1 Department of Experimental Physics, University of Szeged @2 Szeged 6720 @3 HUN @Z 7 aut.
A14 05      @1 Max-Planck Institut für Astronomie, Königstuhl 17 @2 69117 Heidelberg @3 DEU @Z 8 aut.
A20       @1 2732-2742
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 2067 @5 354000181790940480
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 10-0401164
A60       @1 P
A61       @0 A
A64 01  1    @0 Monthly Notices of the Royal Astronomical Society
A66 01      @0 USA
C01 01    ENG  @0 Globular clusters (GCs) have proven to be essential to our understanding of many important astrophysical phenomena. Here, we analyse spectroscopic observations of 10 halo GCs to determine their dark matter (DM) content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explains their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/Lv ? 5, therefore, we infer the observed dynamics do not require DM, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 ±0.1 km s-1 and 0.25 ± 0.15 km s-1, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.
C02 01  3    @0 001E03
C03 01  3  FRE  @0 Amas globulaire @5 26
C03 01  3  ENG  @0 Globular clusters @5 26
C03 02  3  FRE  @0 Matière sombre @5 27
C03 02  3  ENG  @0 Dark matter @5 27
C03 03  X  FRE  @0 Métallicité @5 28
C03 03  X  ENG  @0 Metallicity @5 28
C03 03  X  SPA  @0 Metalicidad @5 28
C03 04  X  FRE  @0 Observation spectroscopique @5 29
C03 04  X  ENG  @0 Spectroscopical observation @5 29
C03 04  X  SPA  @0 Observación espectroscópica @5 29
C03 05  3  FRE  @0 Halo galactique @5 30
C03 05  3  ENG  @0 Galactic halos @5 30
C03 06  3  FRE  @0 Disque galactique @5 31
C03 06  3  ENG  @0 Galactic disks @5 31
C03 07  3  FRE  @0 Dynamique stellaire @5 32
C03 07  3  ENG  @0 Stellar dynamics @5 32
C03 08  3  FRE  @0 Cinématique @5 33
C03 08  3  ENG  @0 Kinematics @5 33
C03 09  X  FRE  @0 Aplatissement @5 34
C03 09  X  ENG  @0 Flattening @5 34
C03 09  X  SPA  @0 Aplanamiento @5 34
C03 10  X  FRE  @0 Dispersion vitesse @5 35
C03 10  X  ENG  @0 Velocity dispersion @5 35
C03 10  X  SPA  @0 Dispersión velocidad @5 35
C03 11  3  FRE  @0 Gravité @5 36
C03 11  3  ENG  @0 Gravity @5 36
C03 12  3  FRE  @0 Gravitation @5 37
C03 12  3  ENG  @0 Gravitation @5 37
C03 13  3  FRE  @0 Amas stellaire @5 38
C03 13  3  ENG  @0 Star clusters @5 38
C03 14  3  FRE  @0 Voie lactée @5 39
C03 14  3  ENG  @0 Milky Way @5 39
N21       @1 256
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 10-0401164 INIST
ET : Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating
AU : LANE (Richard R.); KISS (László L.); LEWIS (Geraint F.); IBATA (Rodrigo A.); SIEBERT (Arnaud); BEDDING (Timothy R.); SZEKELY (Péter); BALOG (Zoltán); SZABO (Gyula M.)
AF : Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney/NSW 2006/Australie (1 aut., 2 aut., 3 aut., 6 aut.); Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67/1525 Budapest/Hongrie (2 aut., 9 aut.); Observatoire Astronomique, Universite de Strasbourg, CNRS/67000 Strasbourg/France (4 aut., 5 aut.); Department of Experimental Physics, University of Szeged/Szeged 6720/Hongrie (7 aut.); Max-Planck Institut für Astronomie, Königstuhl 17/69117 Heidelberg/Allemagne (8 aut.)
DT : Publication en série; Niveau analytique
SO : Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Etats-Unis; Da. 2010; Vol. 406; No. 4; Pp. 2732-2742; Bibl. 3/4 p.
LA : Anglais
EA : Globular clusters (GCs) have proven to be essential to our understanding of many important astrophysical phenomena. Here, we analyse spectroscopic observations of 10 halo GCs to determine their dark matter (DM) content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explains their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/Lv ? 5, therefore, we infer the observed dynamics do not require DM, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 ±0.1 km s-1 and 0.25 ± 0.15 km s-1, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.
CC : 001E03
FD : Amas globulaire; Matière sombre; Métallicité; Observation spectroscopique; Halo galactique; Disque galactique; Dynamique stellaire; Cinématique; Aplatissement; Dispersion vitesse; Gravité; Gravitation; Amas stellaire; Voie lactée
ED : Globular clusters; Dark matter; Metallicity; Spectroscopical observation; Galactic halos; Galactic disks; Stellar dynamics; Kinematics; Flattening; Velocity dispersion; Gravity; Gravitation; Star clusters; Milky Way
SD : Metalicidad; Observación espectroscópica; Aplanamiento; Dispersión velocidad
LO : INIST-2067.354000181790940480
ID : 10-0401164

Links to Exploration step

Pascal:10-0401164

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating</title>
<author>
<name sortKey="Lane, Richard R" sort="Lane, Richard R" uniqKey="Lane R" first="Richard R." last="Lane">Richard R. Lane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kiss, Laszl L" sort="Kiss, Laszl L" uniqKey="Kiss L" first="Lászl L." last="Kiss">Lászl L. Kiss</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67</s1>
<s2>1525 Budapest</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Geraint F" sort="Lewis, Geraint F" uniqKey="Lewis G" first="Geraint F." last="Lewis">Geraint F. Lewis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ibata, Rodrigo A" sort="Ibata, Rodrigo A" uniqKey="Ibata R" first="Rodrigo A." last="Ibata">Rodrigo A. Ibata</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Observatoire Astronomique, Universite de Strasbourg, CNRS</s1>
<s2>67000 Strasbourg</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Siebert, Arnaud" sort="Siebert, Arnaud" uniqKey="Siebert A" first="Arnaud" last="Siebert">Arnaud Siebert</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Observatoire Astronomique, Universite de Strasbourg, CNRS</s1>
<s2>67000 Strasbourg</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bedding, Timothy R" sort="Bedding, Timothy R" uniqKey="Bedding T" first="Timothy R." last="Bedding">Timothy R. Bedding</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Szekely, Peter" sort="Szekely, Peter" uniqKey="Szekely P" first="Péter" last="Szekely">Péter Szekely</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Experimental Physics, University of Szeged</s1>
<s2>Szeged 6720</s2>
<s3>HUN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Balog, Zoltan" sort="Balog, Zoltan" uniqKey="Balog Z" first="Zoltán" last="Balog">Zoltán Balog</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Max-Planck Institut für Astronomie, Königstuhl 17</s1>
<s2>69117 Heidelberg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Szabo, Gyula M" sort="Szabo, Gyula M" uniqKey="Szabo G" first="Gyula M." last="Szabo">Gyula M. Szabo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67</s1>
<s2>1525 Budapest</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0401164</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0401164 INIST</idno>
<idno type="RBID">Pascal:10-0401164</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">002426</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating</title>
<author>
<name sortKey="Lane, Richard R" sort="Lane, Richard R" uniqKey="Lane R" first="Richard R." last="Lane">Richard R. Lane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kiss, Laszl L" sort="Kiss, Laszl L" uniqKey="Kiss L" first="Lászl L." last="Kiss">Lászl L. Kiss</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67</s1>
<s2>1525 Budapest</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Geraint F" sort="Lewis, Geraint F" uniqKey="Lewis G" first="Geraint F." last="Lewis">Geraint F. Lewis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ibata, Rodrigo A" sort="Ibata, Rodrigo A" uniqKey="Ibata R" first="Rodrigo A." last="Ibata">Rodrigo A. Ibata</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Observatoire Astronomique, Universite de Strasbourg, CNRS</s1>
<s2>67000 Strasbourg</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Siebert, Arnaud" sort="Siebert, Arnaud" uniqKey="Siebert A" first="Arnaud" last="Siebert">Arnaud Siebert</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Observatoire Astronomique, Universite de Strasbourg, CNRS</s1>
<s2>67000 Strasbourg</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bedding, Timothy R" sort="Bedding, Timothy R" uniqKey="Bedding T" first="Timothy R." last="Bedding">Timothy R. Bedding</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Szekely, Peter" sort="Szekely, Peter" uniqKey="Szekely P" first="Péter" last="Szekely">Péter Szekely</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Experimental Physics, University of Szeged</s1>
<s2>Szeged 6720</s2>
<s3>HUN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Balog, Zoltan" sort="Balog, Zoltan" uniqKey="Balog Z" first="Zoltán" last="Balog">Zoltán Balog</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Max-Planck Institut für Astronomie, Königstuhl 17</s1>
<s2>69117 Heidelberg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Szabo, Gyula M" sort="Szabo, Gyula M" uniqKey="Szabo G" first="Gyula M." last="Szabo">Gyula M. Szabo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67</s1>
<s2>1525 Budapest</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society</title>
<title level="j" type="abbreviated">Mon. Not. R. Astron. Soc.</title>
<idno type="ISSN">0035-8711</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dark matter</term>
<term>Flattening</term>
<term>Galactic disks</term>
<term>Galactic halos</term>
<term>Globular clusters</term>
<term>Gravitation</term>
<term>Gravity</term>
<term>Kinematics</term>
<term>Metallicity</term>
<term>Milky Way</term>
<term>Spectroscopical observation</term>
<term>Star clusters</term>
<term>Stellar dynamics</term>
<term>Velocity dispersion</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Amas globulaire</term>
<term>Matière sombre</term>
<term>Métallicité</term>
<term>Observation spectroscopique</term>
<term>Halo galactique</term>
<term>Disque galactique</term>
<term>Dynamique stellaire</term>
<term>Cinématique</term>
<term>Aplatissement</term>
<term>Dispersion vitesse</term>
<term>Gravité</term>
<term>Gravitation</term>
<term>Amas stellaire</term>
<term>Voie lactée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Globular clusters (GCs) have proven to be essential to our understanding of many important astrophysical phenomena. Here, we analyse spectroscopic observations of 10 halo GCs to determine their dark matter (DM) content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explains their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/L
<sub>v</sub>
? 5, therefore, we infer the observed dynamics do not require DM, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 ±0.1 km s
<sup>-1</sup>
and 0.25 ± 0.15 km s
<sup>-1</sup>
, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0035-8711</s0>
</fA01>
<fA02 i1="01">
<s0>MNRAA4</s0>
</fA02>
<fA03 i2="1">
<s0>Mon. Not. R. Astron. Soc.</s0>
</fA03>
<fA05>
<s2>406</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LANE (Richard R.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KISS (László L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEWIS (Geraint F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>IBATA (Rodrigo A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SIEBERT (Arnaud)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BEDDING (Timothy R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SZEKELY (Péter)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BALOG (Zoltán)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SZABO (Gyula M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney</s1>
<s2>NSW 2006</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67</s1>
<s2>1525 Budapest</s2>
<s3>HUN</s3>
<sZ>2 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Observatoire Astronomique, Universite de Strasbourg, CNRS</s1>
<s2>67000 Strasbourg</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Experimental Physics, University of Szeged</s1>
<s2>Szeged 6720</s2>
<s3>HUN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Max-Planck Institut für Astronomie, Königstuhl 17</s1>
<s2>69117 Heidelberg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>2732-2742</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2067</s2>
<s5>354000181790940480</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0401164</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Monthly Notices of the Royal Astronomical Society</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Globular clusters (GCs) have proven to be essential to our understanding of many important astrophysical phenomena. Here, we analyse spectroscopic observations of 10 halo GCs to determine their dark matter (DM) content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explains their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/L
<sub>v</sub>
? 5, therefore, we infer the observed dynamics do not require DM, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 ±0.1 km s
<sup>-1</sup>
and 0.25 ± 0.15 km s
<sup>-1</sup>
, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E03</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Amas globulaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Globular clusters</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Matière sombre</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Dark matter</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Métallicité</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Metallicity</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Metalicidad</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Observation spectroscopique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Spectroscopical observation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Observación espectroscópica</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Halo galactique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Galactic halos</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Disque galactique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Galactic disks</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dynamique stellaire</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Stellar dynamics</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cinématique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Kinematics</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Aplatissement</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Flattening</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Aplanamiento</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dispersion vitesse</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Velocity dispersion</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Dispersión velocidad</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gravité</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gravity</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gravitation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gravitation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Amas stellaire</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Star clusters</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Voie lactée</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Milky Way</s0>
<s5>39</s5>
</fC03>
<fN21>
<s1>256</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 10-0401164 INIST</NO>
<ET>Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating</ET>
<AU>LANE (Richard R.); KISS (László L.); LEWIS (Geraint F.); IBATA (Rodrigo A.); SIEBERT (Arnaud); BEDDING (Timothy R.); SZEKELY (Péter); BALOG (Zoltán); SZABO (Gyula M.)</AU>
<AF>Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney/NSW 2006/Australie (1 aut., 2 aut., 3 aut., 6 aut.); Konkoly Observatory of the Hungarian Academy of Sciences, PO Box 67/1525 Budapest/Hongrie (2 aut., 9 aut.); Observatoire Astronomique, Universite de Strasbourg, CNRS/67000 Strasbourg/France (4 aut., 5 aut.); Department of Experimental Physics, University of Szeged/Szeged 6720/Hongrie (7 aut.); Max-Planck Institut für Astronomie, Königstuhl 17/69117 Heidelberg/Allemagne (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Monthly Notices of the Royal Astronomical Society; ISSN 0035-8711; Coden MNRAA4; Etats-Unis; Da. 2010; Vol. 406; No. 4; Pp. 2732-2742; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Globular clusters (GCs) have proven to be essential to our understanding of many important astrophysical phenomena. Here, we analyse spectroscopic observations of 10 halo GCs to determine their dark matter (DM) content, their tidal heating by the Galactic disc and halo, describe their metallicities and the likelihood that Newtonian dynamics explains their kinematics. We analyse a large number of members in all clusters, allowing us to address all these issues together, and we have included NGC 288 and M30 to overlap with previous studies. We find that any flattening of the velocity dispersion profiles in the outer regions of our clusters can be explained by tidal heating. We also find that all our GCs have M/L
<sub>v</sub>
? 5, therefore, we infer the observed dynamics do not require DM, or a modification of gravity. We suggest that the lack of tidal heating signatures in distant clusters indicates the halo is not triaxial. The isothermal rotations of each cluster are measured, with M4 and NGC 288 exhibiting rotation at a level of 0.9 ±0.1 km s
<sup>-1</sup>
and 0.25 ± 0.15 km s
<sup>-1</sup>
, respectively. We also indirectly measure the tidal radius of NGC 6752, determining a more realistic figure for this cluster than current literature values. Lastly, an unresolved and intriguing puzzle is uncovered with regard to the cooling of the outer regions of all ten clusters.</EA>
<CC>001E03</CC>
<FD>Amas globulaire; Matière sombre; Métallicité; Observation spectroscopique; Halo galactique; Disque galactique; Dynamique stellaire; Cinématique; Aplatissement; Dispersion vitesse; Gravité; Gravitation; Amas stellaire; Voie lactée</FD>
<ED>Globular clusters; Dark matter; Metallicity; Spectroscopical observation; Galactic halos; Galactic disks; Stellar dynamics; Kinematics; Flattening; Velocity dispersion; Gravity; Gravitation; Star clusters; Milky Way</ED>
<SD>Metalicidad; Observación espectroscópica; Aplanamiento; Dispersión velocidad</SD>
<LO>INIST-2067.354000181790940480</LO>
<ID>10-0401164</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002426 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 002426 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0401164
   |texte=   Halo globular clusters observed with AAOmega: dark matter content, metallicity and tidal heating
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024