Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer

Identifieur interne : 001886 ( Main/Exploration ); précédent : 001885; suivant : 001887

Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer

Auteurs : E. Maucci [France] ; R. J. Martinuzzi ; Cedric L. Briens ; Gabriel Wild [France]

Source :

RBID : ISTEX:543369DCE374F4EC1DC5CB8BC431A2CBF62F126A

Descripteurs français

English descriptors

Abstract

The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.

Url:
DOI: 10.1002/cjce.5450790305


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<author>
<name sortKey="Maucci, E" sort="Maucci, E" uniqKey="Maucci E" first="E." last="Maucci">E. Maucci</name>
</author>
<author>
<name sortKey="Martinuzzi, R J" sort="Martinuzzi, R J" uniqKey="Martinuzzi R" first="R. J." last="Martinuzzi">R. J. Martinuzzi</name>
</author>
<author>
<name sortKey="Briens, Cedric L" sort="Briens, Cedric L" uniqKey="Briens C" first="Cedric L." last="Briens">Cedric L. Briens</name>
</author>
<author>
<name sortKey="Wild, Gabriel" sort="Wild, Gabriel" uniqKey="Wild G" first="Gabriel" last="Wild">Gabriel Wild</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:543369DCE374F4EC1DC5CB8BC431A2CBF62F126A</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1002/cjce.5450790305</idno>
<idno type="url">https://api.istex.fr/document/543369DCE374F4EC1DC5CB8BC431A2CBF62F126A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001872</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001872</idno>
<idno type="wicri:Area/Istex/Curation">001872</idno>
<idno type="wicri:Area/Istex/Checkpoint">000549</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000549</idno>
<idno type="wicri:doubleKey">0008-4034:2001:Maucci E:modelling:of:transient</idno>
<idno type="wicri:Area/Main/Merge">001B61</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:01-0369665</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000984</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000127</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000927</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000927</idno>
<idno type="wicri:doubleKey">0008-4034:2001:Maucci E:modelling:of:transient</idno>
<idno type="wicri:Area/Main/Merge">001D46</idno>
<idno type="wicri:Area/Main/Curation">001886</idno>
<idno type="wicri:Area/Main/Exploration">001886</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<author>
<name sortKey="Maucci, E" sort="Maucci, E" uniqKey="Maucci E" first="E." last="Maucci">E. Maucci</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Martinuzzi, R J" sort="Martinuzzi, R J" uniqKey="Martinuzzi R" first="R. J." last="Martinuzzi">R. J. Martinuzzi</name>
<affiliation>
<wicri:noCountry code="subField">5B9</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Briens, Cedric L" sort="Briens, Cedric L" uniqKey="Briens C" first="Cedric L." last="Briens">Cedric L. Briens</name>
<affiliation></affiliation>
<affiliation></affiliation>
<affiliation>
<wicri:noCountry code="subField">5B9</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Wild, Gabriel" sort="Wild, Gabriel" uniqKey="Wild G" first="Gabriel" last="Wild">Gabriel Wild</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Canadian Journal of Chemical Engineering</title>
<title level="j" type="alt">CANADIAN JOURNAL OF CHEMICAL ENGINEERING</title>
<idno type="ISSN">0008-4034</idno>
<idno type="eISSN">1939-019X</idno>
<imprint>
<biblScope unit="vol">79</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="329">329</biblScope>
<biblScope unit="page" to="340">340</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2001-06">2001-06</date>
</imprint>
<idno type="ISSN">0008-4034</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0008-4034</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active element</term>
<term>Analytical model</term>
<term>Average bulk velocity</term>
<term>Boundary conditions</term>
<term>Bubble beds</term>
<term>Bubble column</term>
<term>Bubble columns</term>
<term>Canadian journal</term>
<term>Chem</term>
<term>Chemical engineering</term>
<term>Coefficient</term>
<term>Cuinon</term>
<term>Current intensity</term>
<term>Different pulse frequencies</term>
<term>Dynamic surface renewal model</term>
<term>Effective surface area</term>
<term>Electrochemical</term>
<term>Electrochemical method</term>
<term>Electrochemical probe</term>
<term>Electrochemical probes</term>
<term>Electrochemical reaction</term>
<term>Empirical relationship</term>
<term>Engineering science</term>
<term>Enhancement</term>
<term>Enhancement factor</term>
<term>Epoxy resin</term>
<term>Error bars</term>
<term>Experimental conditions</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Experimental study</term>
<term>Experimental uncertainty</term>
<term>Fixed bed reactor</term>
<term>Flow field</term>
<term>Flow rate</term>
<term>Flow reversal</term>
<term>Flow velocity</term>
<term>Fluctuation</term>
<term>Fluid element</term>
<term>Fluid elements</term>
<term>Fluidized beds</term>
<term>Genie chimique</term>
<term>Heat flux</term>
<term>Heat transfer</term>
<term>Heat transfer applications</term>
<term>Heat transfer coefficient</term>
<term>Heat transfer measurements</term>
<term>Heat transfer probe</term>
<term>Heat transfer probes</term>
<term>Hydrodynamics</term>
<term>Instantaneous mass transfer coefficient</term>
<term>Interface</term>
<term>June</term>
<term>Liquid flow</term>
<term>Liquid pulses</term>
<term>Liquid solid</term>
<term>Liquid velocity</term>
<term>Liquid velocity fluctuations</term>
<term>Liquid velocity pulse</term>
<term>Liquid velocity pulses</term>
<term>Local velocity</term>
<term>Loss function</term>
<term>Many applications</term>
<term>Mass transfer</term>
<term>Mass transfer coefficient</term>
<term>Mass transfer enhancement</term>
<term>Mass transfer measurements</term>
<term>Mass transfer probe</term>
<term>Mass transfer problem</term>
<term>Matiere</term>
<term>Matiere entre</term>
<term>Maucci</term>
<term>Measurement sensor</term>
<term>Measurement uncertainty</term>
<term>Model performance</term>
<term>Modeling</term>
<term>Multiphase</term>
<term>Multiphase flow</term>
<term>Multiphase flows</term>
<term>Present results</term>
<term>Principal difference</term>
<term>Probe</term>
<term>Probe response</term>
<term>Probe size</term>
<term>Probe surface</term>
<term>Pulsating flow</term>
<term>Pulse</term>
<term>Pulse amplitude</term>
<term>Pulse asymmetry</term>
<term>Pulse frequency</term>
<term>Ratel</term>
<term>Recents progres</term>
<term>Relative amplitude</term>
<term>Relative pulse magnitude</term>
<term>Renewal</term>
<term>Renewal frequency</term>
<term>Renewal model</term>
<term>Residence time</term>
<term>Response time</term>
<term>Results show</term>
<term>Reversal</term>
<term>Reynolds numbers</term>
<term>Schematic diagram</term>
<term>Schmidt number</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Sinusoidal wave form</term>
<term>Sonic vibrations</term>
<term>State relations</term>
<term>Surface renewal model</term>
<term>Surface renewal rate</term>
<term>Symmetric pulses</term>
<term>Symmetric square pulses</term>
<term>Temperature difference</term>
<term>Thermal conductivity</term>
<term>Thermistor</term>
<term>Thermistor surface</term>
<term>Time interval</term>
<term>Transfer function</term>
<term>Transfer mass</term>
<term>Transient</term>
<term>Transient effects</term>
<term>Turbulent mass transfer</term>
<term>Two phase flow</term>
<term>Unsteady state</term>
<term>Velocity</term>
<term>Velocity distribution</term>
<term>Velocity gradient</term>
<term>Velocity pulses</term>
<term>Voltage drop</term>
<term>Western ontario</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>4755K</term>
<term>Capteur mesure</term>
<term>Distribution vitesse</term>
<term>Ecoulement diphasique</term>
<term>Ecoulement liquide</term>
<term>Ecoulement pulsatoire</term>
<term>Etude expérimentale</term>
<term>Hydrodynamique</term>
<term>Liquide solide</term>
<term>Modélisation</term>
<term>Méthode électrochimique</term>
<term>Réacteur lit fixe</term>
<term>Régime transitoire</term>
<term>Transfert chaleur</term>
<term>Transfert masse</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active element</term>
<term>Analytical model</term>
<term>Average bulk velocity</term>
<term>Boundary conditions</term>
<term>Bubble beds</term>
<term>Bubble column</term>
<term>Bubble columns</term>
<term>Canadian journal</term>
<term>Chem</term>
<term>Chemical engineering</term>
<term>Coefficient</term>
<term>Cuinon</term>
<term>Current intensity</term>
<term>Different pulse frequencies</term>
<term>Dynamic surface renewal model</term>
<term>Effective surface area</term>
<term>Electrochemical</term>
<term>Electrochemical method</term>
<term>Electrochemical probe</term>
<term>Electrochemical probes</term>
<term>Electrochemical reaction</term>
<term>Empirical relationship</term>
<term>Engineering science</term>
<term>Enhancement</term>
<term>Enhancement factor</term>
<term>Epoxy resin</term>
<term>Error bars</term>
<term>Experimental conditions</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Experimental uncertainty</term>
<term>Flow field</term>
<term>Flow rate</term>
<term>Flow reversal</term>
<term>Flow velocity</term>
<term>Fluctuation</term>
<term>Fluid element</term>
<term>Fluid elements</term>
<term>Fluidized beds</term>
<term>Genie chimique</term>
<term>Heat flux</term>
<term>Heat transfer</term>
<term>Heat transfer applications</term>
<term>Heat transfer coefficient</term>
<term>Heat transfer measurements</term>
<term>Heat transfer probe</term>
<term>Heat transfer probes</term>
<term>Instantaneous mass transfer coefficient</term>
<term>Interface</term>
<term>June</term>
<term>Liquid pulses</term>
<term>Liquid velocity</term>
<term>Liquid velocity fluctuations</term>
<term>Liquid velocity pulse</term>
<term>Liquid velocity pulses</term>
<term>Local velocity</term>
<term>Loss function</term>
<term>Many applications</term>
<term>Mass transfer</term>
<term>Mass transfer coefficient</term>
<term>Mass transfer enhancement</term>
<term>Mass transfer measurements</term>
<term>Mass transfer probe</term>
<term>Mass transfer problem</term>
<term>Matiere</term>
<term>Matiere entre</term>
<term>Maucci</term>
<term>Measurement uncertainty</term>
<term>Model performance</term>
<term>Multiphase</term>
<term>Multiphase flow</term>
<term>Multiphase flows</term>
<term>Present results</term>
<term>Principal difference</term>
<term>Probe</term>
<term>Probe response</term>
<term>Probe size</term>
<term>Probe surface</term>
<term>Pulse</term>
<term>Pulse amplitude</term>
<term>Pulse asymmetry</term>
<term>Pulse frequency</term>
<term>Ratel</term>
<term>Recents progres</term>
<term>Relative amplitude</term>
<term>Relative pulse magnitude</term>
<term>Renewal</term>
<term>Renewal frequency</term>
<term>Renewal model</term>
<term>Residence time</term>
<term>Response time</term>
<term>Results show</term>
<term>Reversal</term>
<term>Reynolds numbers</term>
<term>Schematic diagram</term>
<term>Schmidt number</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Sinusoidal wave form</term>
<term>Sonic vibrations</term>
<term>State relations</term>
<term>Surface renewal model</term>
<term>Surface renewal rate</term>
<term>Symmetric pulses</term>
<term>Symmetric square pulses</term>
<term>Temperature difference</term>
<term>Thermal conductivity</term>
<term>Thermistor</term>
<term>Thermistor surface</term>
<term>Time interval</term>
<term>Transfer function</term>
<term>Transfer mass</term>
<term>Transient</term>
<term>Transient effects</term>
<term>Turbulent mass transfer</term>
<term>Velocity</term>
<term>Velocity gradient</term>
<term>Velocity pulses</term>
<term>Voltage drop</term>
<term>Western ontario</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Nancy</li>
</settlement>
<orgName>
<li>Centre national de la recherche scientifique</li>
<li>Laboratoire réactions et génie des procédés</li>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Briens, Cedric L" sort="Briens, Cedric L" uniqKey="Briens C" first="Cedric L." last="Briens">Cedric L. Briens</name>
<name sortKey="Martinuzzi, R J" sort="Martinuzzi, R J" uniqKey="Martinuzzi R" first="R. J." last="Martinuzzi">R. J. Martinuzzi</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Maucci, E" sort="Maucci, E" uniqKey="Maucci E" first="E." last="Maucci">E. Maucci</name>
</region>
<name sortKey="Wild, Gabriel" sort="Wild, Gabriel" uniqKey="Wild G" first="Gabriel" last="Wild">Gabriel Wild</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001886 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001886 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:543369DCE374F4EC1DC5CB8BC431A2CBF62F126A
   |texte=   Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024