Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer

Identifieur interne : 001872 ( Istex/Corpus ); précédent : 001871; suivant : 001873

Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer

Auteurs : E. Maucci ; R. J. Martinuzzi ; Cedric L. Briens ; Gabriel Wild

Source :

RBID : ISTEX:543369DCE374F4EC1DC5CB8BC431A2CBF62F126A

English descriptors

Abstract

The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.

Url:
DOI: 10.1002/cjce.5450790305

Links to Exploration step

ISTEX:543369DCE374F4EC1DC5CB8BC431A2CBF62F126A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<author>
<name sortKey="Maucci, E" sort="Maucci, E" uniqKey="Maucci E" first="E." last="Maucci">E. Maucci</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martinuzzi, R J" sort="Martinuzzi, R J" uniqKey="Martinuzzi R" first="R. J." last="Martinuzzi">R. J. Martinuzzi</name>
<affiliation>
<mods:affiliation>Mechanical and Materials Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Briens, Cedric L" sort="Briens, Cedric L" uniqKey="Briens C" first="Cedric L." last="Briens">Cedric L. Briens</name>
<affiliation>
<mods:affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: cbriens@uwoxa</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wild, Gabriel" sort="Wild, Gabriel" uniqKey="Wild G" first="Gabriel" last="Wild">Gabriel Wild</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:543369DCE374F4EC1DC5CB8BC431A2CBF62F126A</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1002/cjce.5450790305</idno>
<idno type="url">https://api.istex.fr/document/543369DCE374F4EC1DC5CB8BC431A2CBF62F126A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001872</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001872</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<author>
<name sortKey="Maucci, E" sort="Maucci, E" uniqKey="Maucci E" first="E." last="Maucci">E. Maucci</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martinuzzi, R J" sort="Martinuzzi, R J" uniqKey="Martinuzzi R" first="R. J." last="Martinuzzi">R. J. Martinuzzi</name>
<affiliation>
<mods:affiliation>Mechanical and Materials Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Briens, Cedric L" sort="Briens, Cedric L" uniqKey="Briens C" first="Cedric L." last="Briens">Cedric L. Briens</name>
<affiliation>
<mods:affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: cbriens@uwoxa</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wild, Gabriel" sort="Wild, Gabriel" uniqKey="Wild G" first="Gabriel" last="Wild">Gabriel Wild</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Canadian Journal of Chemical Engineering</title>
<title level="j" type="alt">CANADIAN JOURNAL OF CHEMICAL ENGINEERING</title>
<idno type="ISSN">0008-4034</idno>
<idno type="eISSN">1939-019X</idno>
<imprint>
<biblScope unit="vol">79</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="329">329</biblScope>
<biblScope unit="page" to="340">340</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2001-06">2001-06</date>
</imprint>
<idno type="ISSN">0008-4034</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0008-4034</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active element</term>
<term>Analytical model</term>
<term>Average bulk velocity</term>
<term>Boundary conditions</term>
<term>Bubble beds</term>
<term>Bubble column</term>
<term>Bubble columns</term>
<term>Canadian journal</term>
<term>Chem</term>
<term>Chemical engineering</term>
<term>Coefficient</term>
<term>Cuinon</term>
<term>Current intensity</term>
<term>Different pulse frequencies</term>
<term>Dynamic surface renewal model</term>
<term>Effective surface area</term>
<term>Electrochemical</term>
<term>Electrochemical method</term>
<term>Electrochemical probe</term>
<term>Electrochemical probes</term>
<term>Electrochemical reaction</term>
<term>Empirical relationship</term>
<term>Engineering science</term>
<term>Enhancement</term>
<term>Enhancement factor</term>
<term>Epoxy resin</term>
<term>Error bars</term>
<term>Experimental conditions</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Experimental uncertainty</term>
<term>Flow field</term>
<term>Flow rate</term>
<term>Flow reversal</term>
<term>Flow velocity</term>
<term>Fluctuation</term>
<term>Fluid element</term>
<term>Fluid elements</term>
<term>Fluidized beds</term>
<term>Genie chimique</term>
<term>Heat flux</term>
<term>Heat transfer</term>
<term>Heat transfer applications</term>
<term>Heat transfer coefficient</term>
<term>Heat transfer measurements</term>
<term>Heat transfer probe</term>
<term>Heat transfer probes</term>
<term>Instantaneous mass transfer coefficient</term>
<term>Interface</term>
<term>June</term>
<term>Liquid pulses</term>
<term>Liquid velocity</term>
<term>Liquid velocity fluctuations</term>
<term>Liquid velocity pulse</term>
<term>Liquid velocity pulses</term>
<term>Local velocity</term>
<term>Loss function</term>
<term>Many applications</term>
<term>Mass transfer</term>
<term>Mass transfer coefficient</term>
<term>Mass transfer enhancement</term>
<term>Mass transfer measurements</term>
<term>Mass transfer probe</term>
<term>Mass transfer problem</term>
<term>Matiere</term>
<term>Matiere entre</term>
<term>Maucci</term>
<term>Measurement uncertainty</term>
<term>Model performance</term>
<term>Multiphase</term>
<term>Multiphase flow</term>
<term>Multiphase flows</term>
<term>Present results</term>
<term>Principal difference</term>
<term>Probe</term>
<term>Probe response</term>
<term>Probe size</term>
<term>Probe surface</term>
<term>Pulse</term>
<term>Pulse amplitude</term>
<term>Pulse asymmetry</term>
<term>Pulse frequency</term>
<term>Ratel</term>
<term>Recents progres</term>
<term>Relative amplitude</term>
<term>Relative pulse magnitude</term>
<term>Renewal</term>
<term>Renewal frequency</term>
<term>Renewal model</term>
<term>Residence time</term>
<term>Response time</term>
<term>Results show</term>
<term>Reversal</term>
<term>Reynolds numbers</term>
<term>Schematic diagram</term>
<term>Schmidt number</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Sinusoidal wave form</term>
<term>Sonic vibrations</term>
<term>State relations</term>
<term>Surface renewal model</term>
<term>Surface renewal rate</term>
<term>Symmetric pulses</term>
<term>Symmetric square pulses</term>
<term>Temperature difference</term>
<term>Thermal conductivity</term>
<term>Thermistor</term>
<term>Thermistor surface</term>
<term>Time interval</term>
<term>Transfer function</term>
<term>Transfer mass</term>
<term>Transient</term>
<term>Transient effects</term>
<term>Turbulent mass transfer</term>
<term>Velocity</term>
<term>Velocity gradient</term>
<term>Velocity pulses</term>
<term>Voltage drop</term>
<term>Western ontario</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active element</term>
<term>Analytical model</term>
<term>Average bulk velocity</term>
<term>Boundary conditions</term>
<term>Bubble beds</term>
<term>Bubble column</term>
<term>Bubble columns</term>
<term>Canadian journal</term>
<term>Chem</term>
<term>Chemical engineering</term>
<term>Coefficient</term>
<term>Cuinon</term>
<term>Current intensity</term>
<term>Different pulse frequencies</term>
<term>Dynamic surface renewal model</term>
<term>Effective surface area</term>
<term>Electrochemical</term>
<term>Electrochemical method</term>
<term>Electrochemical probe</term>
<term>Electrochemical probes</term>
<term>Electrochemical reaction</term>
<term>Empirical relationship</term>
<term>Engineering science</term>
<term>Enhancement</term>
<term>Enhancement factor</term>
<term>Epoxy resin</term>
<term>Error bars</term>
<term>Experimental conditions</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>Experimental uncertainty</term>
<term>Flow field</term>
<term>Flow rate</term>
<term>Flow reversal</term>
<term>Flow velocity</term>
<term>Fluctuation</term>
<term>Fluid element</term>
<term>Fluid elements</term>
<term>Fluidized beds</term>
<term>Genie chimique</term>
<term>Heat flux</term>
<term>Heat transfer</term>
<term>Heat transfer applications</term>
<term>Heat transfer coefficient</term>
<term>Heat transfer measurements</term>
<term>Heat transfer probe</term>
<term>Heat transfer probes</term>
<term>Instantaneous mass transfer coefficient</term>
<term>Interface</term>
<term>June</term>
<term>Liquid pulses</term>
<term>Liquid velocity</term>
<term>Liquid velocity fluctuations</term>
<term>Liquid velocity pulse</term>
<term>Liquid velocity pulses</term>
<term>Local velocity</term>
<term>Loss function</term>
<term>Many applications</term>
<term>Mass transfer</term>
<term>Mass transfer coefficient</term>
<term>Mass transfer enhancement</term>
<term>Mass transfer measurements</term>
<term>Mass transfer probe</term>
<term>Mass transfer problem</term>
<term>Matiere</term>
<term>Matiere entre</term>
<term>Maucci</term>
<term>Measurement uncertainty</term>
<term>Model performance</term>
<term>Multiphase</term>
<term>Multiphase flow</term>
<term>Multiphase flows</term>
<term>Present results</term>
<term>Principal difference</term>
<term>Probe</term>
<term>Probe response</term>
<term>Probe size</term>
<term>Probe surface</term>
<term>Pulse</term>
<term>Pulse amplitude</term>
<term>Pulse asymmetry</term>
<term>Pulse frequency</term>
<term>Ratel</term>
<term>Recents progres</term>
<term>Relative amplitude</term>
<term>Relative pulse magnitude</term>
<term>Renewal</term>
<term>Renewal frequency</term>
<term>Renewal model</term>
<term>Residence time</term>
<term>Response time</term>
<term>Results show</term>
<term>Reversal</term>
<term>Reynolds numbers</term>
<term>Schematic diagram</term>
<term>Schmidt number</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Sinusoidal wave form</term>
<term>Sonic vibrations</term>
<term>State relations</term>
<term>Surface renewal model</term>
<term>Surface renewal rate</term>
<term>Symmetric pulses</term>
<term>Symmetric square pulses</term>
<term>Temperature difference</term>
<term>Thermal conductivity</term>
<term>Thermistor</term>
<term>Thermistor surface</term>
<term>Time interval</term>
<term>Transfer function</term>
<term>Transfer mass</term>
<term>Transient</term>
<term>Transient effects</term>
<term>Turbulent mass transfer</term>
<term>Velocity</term>
<term>Velocity gradient</term>
<term>Velocity pulses</term>
<term>Voltage drop</term>
<term>Western ontario</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>enhancement</json:string>
<json:string>mass transfer</json:string>
<json:string>chem</json:string>
<json:string>flow reversal</json:string>
<json:string>maucci</json:string>
<json:string>fluctuation</json:string>
<json:string>surface renewal model</json:string>
<json:string>electrochemical</json:string>
<json:string>mass transfer coefficient</json:string>
<json:string>june</json:string>
<json:string>canadian journal</json:string>
<json:string>heat transfer</json:string>
<json:string>thermistor</json:string>
<json:string>matiere</json:string>
<json:string>pulse frequency</json:string>
<json:string>ratel</json:string>
<json:string>liquid velocity</json:string>
<json:string>enhancement factor</json:string>
<json:string>velocity pulses</json:string>
<json:string>cuinon</json:string>
<json:string>multiphase</json:string>
<json:string>response time</json:string>
<json:string>mass transfer enhancement</json:string>
<json:string>chemical engineering</json:string>
<json:string>heat transfer probe</json:string>
<json:string>reversal</json:string>
<json:string>probe surface</json:string>
<json:string>heat transfer measurements</json:string>
<json:string>experimental results</json:string>
<json:string>simulation results</json:string>
<json:string>probe</json:string>
<json:string>coefficient</json:string>
<json:string>surface renewal rate</json:string>
<json:string>mass transfer measurements</json:string>
<json:string>electrochemical method</json:string>
<json:string>analytical model</json:string>
<json:string>fluidized beds</json:string>
<json:string>experimental uncertainty</json:string>
<json:string>liquid velocity pulse</json:string>
<json:string>liquid velocity pulses</json:string>
<json:string>simulation</json:string>
<json:string>pulse</json:string>
<json:string>transfer function</json:string>
<json:string>time interval</json:string>
<json:string>empirical relationship</json:string>
<json:string>heat flux</json:string>
<json:string>measurement uncertainty</json:string>
<json:string>multiphase flows</json:string>
<json:string>pulse amplitude</json:string>
<json:string>flow field</json:string>
<json:string>velocity gradient</json:string>
<json:string>schematic diagram</json:string>
<json:string>heat transfer probes</json:string>
<json:string>electrochemical probes</json:string>
<json:string>symmetric square pulses</json:string>
<json:string>voltage drop</json:string>
<json:string>boundary conditions</json:string>
<json:string>heat transfer coefficient</json:string>
<json:string>fluid element</json:string>
<json:string>fluid elements</json:string>
<json:string>engineering science</json:string>
<json:string>transfer mass</json:string>
<json:string>matiere entre</json:string>
<json:string>genie chimique</json:string>
<json:string>bubble beds</json:string>
<json:string>current intensity</json:string>
<json:string>effective surface area</json:string>
<json:string>renewal frequency</json:string>
<json:string>experimental data</json:string>
<json:string>probe size</json:string>
<json:string>sonic vibrations</json:string>
<json:string>model performance</json:string>
<json:string>liquid velocity fluctuations</json:string>
<json:string>heat transfer applications</json:string>
<json:string>flow velocity</json:string>
<json:string>probe response</json:string>
<json:string>dynamic surface renewal model</json:string>
<json:string>state relations</json:string>
<json:string>electrochemical reaction</json:string>
<json:string>pulse asymmetry</json:string>
<json:string>liquid pulses</json:string>
<json:string>many applications</json:string>
<json:string>instantaneous mass transfer coefficient</json:string>
<json:string>mass transfer probe</json:string>
<json:string>different pulse frequencies</json:string>
<json:string>renewal model</json:string>
<json:string>flow rate</json:string>
<json:string>experimental conditions</json:string>
<json:string>relative pulse magnitude</json:string>
<json:string>transient effects</json:string>
<json:string>local velocity</json:string>
<json:string>schmidt number</json:string>
<json:string>reynolds numbers</json:string>
<json:string>sinusoidal wave form</json:string>
<json:string>results show</json:string>
<json:string>electrochemical probe</json:string>
<json:string>error bars</json:string>
<json:string>relative amplitude</json:string>
<json:string>average bulk velocity</json:string>
<json:string>symmetric pulses</json:string>
<json:string>multiphase flow</json:string>
<json:string>present results</json:string>
<json:string>principal difference</json:string>
<json:string>epoxy resin</json:string>
<json:string>active element</json:string>
<json:string>thermal conductivity</json:string>
<json:string>temperature difference</json:string>
<json:string>mass transfer problem</json:string>
<json:string>thermistor surface</json:string>
<json:string>loss function</json:string>
<json:string>residence time</json:string>
<json:string>western ontario</json:string>
<json:string>bubble column</json:string>
<json:string>recents progres</json:string>
<json:string>bubble columns</json:string>
<json:string>turbulent mass transfer</json:string>
<json:string>renewal</json:string>
<json:string>velocity</json:string>
<json:string>interface</json:string>
<json:string>transient</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>E. Maucci</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</json:string>
<json:string>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. J. Martinuzzi</name>
<affiliations>
<json:string>Mechanical and Materials Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</json:string>
</affiliations>
</json:item>
<json:item>
<name>Cedric L. Briens</name>
<affiliations>
<json:string>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</json:string>
<json:string>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gabriel Wild</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mass transfer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>heat transfer</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>multiphase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>transient</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>modelling</value>
</json:item>
</subject>
<articleId>
<json:string>CJCE5450790305</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.</abstract>
<qualityIndicators>
<score>6.248</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>648.72 x 864.24 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>691</abstractCharCount>
<pdfWordCount>7375</pdfWordCount>
<pdfCharCount>44976</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>104</abstractWordCount>
</qualityIndicators>
<title>Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>The Canadian Journal of Chemical Engineering</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1939-019X</json:string>
</doi>
<issn>
<json:string>0008-4034</json:string>
</issn>
<eissn>
<json:string>1939-019X</json:string>
</eissn>
<publisherId>
<json:string>CJCE</json:string>
</publisherId>
<volume>79</volume>
<issue>3</issue>
<pages>
<first>329</first>
<last>340</last>
<total>12</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>sciences appliquees</json:string>
<json:string>pollution</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1002/cjce.5450790305</json:string>
</doi>
<id>543369DCE374F4EC1DC5CB8BC431A2CBF62F126A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/543369DCE374F4EC1DC5CB8BC431A2CBF62F126A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/543369DCE374F4EC1DC5CB8BC431A2CBF62F126A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/543369DCE374F4EC1DC5CB8BC431A2CBF62F126A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2001 Canadian Society for Chemical Engineering</licence>
</availability>
<date type="published" when="2001-06"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<title level="a" type="short" xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<author xml:id="author-0000">
<persName>
<forename type="first">E.</forename>
<surname>Maucci</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9
<address>
<country key="GB"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">R. J.</forename>
<surname>Martinuzzi</surname>
</persName>
<affiliation>Mechanical and Materials Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9
<address>
<country key="GB"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<forename type="first">Cedric L.</forename>
<surname>Briens</surname>
</persName>
<email>cbriens@uwoxa</email>
<affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9
<address>
<country key="GB"></country>
</address>
</affiliation>
<affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Gabriel</forename>
<surname>Wild</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">543369DCE374F4EC1DC5CB8BC431A2CBF62F126A</idno>
<idno type="ark">ark:/67375/WNG-C08B2X5X-4</idno>
<idno type="DOI">10.1002/cjce.5450790305</idno>
<idno type="unit">CJCE5450790305</idno>
<idno type="toTypesetVersion">file:CJCE.CJCE5450790305.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">The Canadian Journal of Chemical Engineering</title>
<title level="j" type="alt">CANADIAN JOURNAL OF CHEMICAL ENGINEERING</title>
<idno type="pISSN">0008-4034</idno>
<idno type="eISSN">1939-019X</idno>
<idno type="book-DOI">10.1002/(ISSN)1939-019X</idno>
<idno type="book-part-DOI">10.1002/cjce.v79:3</idno>
<idno type="product">CJCE</idno>
<imprint>
<biblScope unit="vol">79</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="329">329</biblScope>
<biblScope unit="page" to="340">340</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2001-06"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.</p>
</abstract>
<abstract xml:lang="fr" style="main">
<p>Le modèle de renouvellement de surface dynamique de Maucci et al. (2001) est appliqué aux problèmes de transfert de matière et étendu aux mesures de transfert de chaleur dans les écoulements biphasiques jaillissants. Le modèle sert également à simuler le transfert de matière pour des pulsations de vitesse de liquide d'ondes carrées dans une colonne solides‐liquide. Les expériences et la simulation montrent que, lorsque se produit l'inversion de l'écoulement, le transfert de matière moyen pour un écoulement jaillissant peut être significativement plus important que pour un écoulement en régime permanent au même débit massique. Cette augmentation dépend principalement de la grandeur relative des pulsations. L'influence de la fréquence et de la symétrie des pulsations est de second ordre. Les différences évidentes entre les diverses études publiées sont résolues.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">mass transfer</term>
<term xml:id="kwd2">heat transfer</term>
<term xml:id="kwd3">multiphase</term>
<term xml:id="kwd4">transient</term>
<term xml:id="kwd5">modelling</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/543369DCE374F4EC1DC5CB8BC431A2CBF62F126A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1939-019X</doi>
<issn type="print">0008-4034</issn>
<issn type="electronic">1939-019X</issn>
<idGroup>
<id type="product" value="CJCE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="CANADIAN JOURNAL OF CHEMICAL ENGINEERING">The Canadian Journal of Chemical Engineering</title>
<title type="short">Can. J. Chem. Eng.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="no">10.1002/cjce.v79:3</doi>
<numberingGroup>
<numbering type="journalVolume" number="79">79</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2001-06">June 2001</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="5" status="forIssue">
<doi origin="wiley" registered="no">10.1002/cjce.5450790305</doi>
<idGroup>
<id type="unit" value="CJCE5450790305"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2001 Canadian Society for Chemical Engineering</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2000-07-18"></event>
<event type="manuscriptRevised" date="2001-02-26"></event>
<event type="manuscriptAccepted" date="2001-03-28"></event>
<event type="firstOnline" date="2009-03-27"></event>
<event type="publishedOnlineFinalForm" date="2009-03-27"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">329</numbering>
<numbering type="pageLast">340</numbering>
</numberingGroup>
<correspondenceTo>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CJCE.CJCE5450790305.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="13"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="43"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
<title type="short" xml:lang="en">Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af3">
<personName>
<givenNames>E.</givenNames>
<familyName>Maucci</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>R. J.</givenNames>
<familyName>Martinuzzi</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3" corresponding="yes">
<personName>
<givenNames>Cedric L.</givenNames>
<familyName>Briens</familyName>
</personName>
<contactDetails>
<email>cbriens@uwoxa</email>
</contactDetails>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Gabriel</givenNames>
<familyName>Wild</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="GB" type="organization">
<unparsedAffiliation>Mechanical and Materials Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="GB" type="organization">
<unparsedAffiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">mass transfer</keyword>
<keyword xml:id="kwd2">heat transfer</keyword>
<keyword xml:id="kwd3">multiphase</keyword>
<keyword xml:id="kwd4">transient</keyword>
<keyword xml:id="kwd5">modelling</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.</p>
</abstract>
<abstract type="main" xml:lang="fr">
<p>Le modèle de renouvellement de surface dynamique de Maucci et al. (2001) est appliqué aux problèmes de transfert de matière et étendu aux mesures de transfert de chaleur dans les écoulements biphasiques jaillissants. Le modèle sert également à simuler le transfert de matière pour des pulsations de vitesse de liquide d'ondes carrées dans une colonne solides‐liquide. Les expériences et la simulation montrent que, lorsque se produit l'inversion de l'écoulement, le transfert de matière moyen pour un écoulement jaillissant peut être significativement plus important que pour un écoulement en régime permanent au même débit massique. Cette augmentation dépend principalement de la grandeur relative des pulsations. L'influence de la fréquence et de la symétrie des pulsations est de second ordre. Les différences évidentes entre les diverses études publiées sont résolues.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">E.</namePart>
<namePart type="family">Maucci</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</affiliation>
<affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. J.</namePart>
<namePart type="family">Martinuzzi</namePart>
<affiliation>Mechanical and Materials Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cedric L.</namePart>
<namePart type="family">Briens</namePart>
<affiliation>Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</affiliation>
<affiliation>E-mail: cbriens@uwoxa</affiliation>
<affiliation>Correspondence address: Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, ON N6A 5B9</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriel</namePart>
<namePart type="family">Wild</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS, ENSIC, B.P. 451, 54001, Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2001-06</dateIssued>
<dateCaptured encoding="w3cdtf">2000-07-18</dateCaptured>
<dateValid encoding="w3cdtf">2001-03-28</dateValid>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">13</extent>
<extent unit="tables">1</extent>
<extent unit="references">43</extent>
</physicalDescription>
<abstract lang="en">The dynamic surface renewal model of Maucci et al. (2001) is applied to transient mass transfer problems and extended to transient heat transfer measurements in pulsating, two‐phase flows. The model is also used to simulate mass transfer for square‐wave liquid velocity pulses in a liquid‐solid column. Experiments and simulation show that, when flow reversal occurs, the average mass transfer for a pulsating flow can be significantly higher than for steady state flow at the same bulk flow rate. This increase depends mainly on the relative pulse magnitude. The influence of pulse frequency and symmetry is second‐order. Apparent differences between various published studies are resolved.</abstract>
<abstract lang="fr">Le modèle de renouvellement de surface dynamique de Maucci et al. (2001) est appliqué aux problèmes de transfert de matière et étendu aux mesures de transfert de chaleur dans les écoulements biphasiques jaillissants. Le modèle sert également à simuler le transfert de matière pour des pulsations de vitesse de liquide d'ondes carrées dans une colonne solides‐liquide. Les expériences et la simulation montrent que, lorsque se produit l'inversion de l'écoulement, le transfert de matière moyen pour un écoulement jaillissant peut être significativement plus important que pour un écoulement en régime permanent au même débit massique. Cette augmentation dépend principalement de la grandeur relative des pulsations. L'influence de la fréquence et de la symétrie des pulsations est de second ordre. Les différences évidentes entre les diverses études publiées sont résolues.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>mass transfer</topic>
<topic>heat transfer</topic>
<topic>multiphase</topic>
<topic>transient</topic>
<topic>modelling</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The Canadian Journal of Chemical Engineering</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Can. J. Chem. Eng.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0008-4034</identifier>
<identifier type="eISSN">1939-019X</identifier>
<identifier type="DOI">10.1002/(ISSN)1939-019X</identifier>
<identifier type="PublisherID">CJCE</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>79</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>329</start>
<end>340</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">543369DCE374F4EC1DC5CB8BC431A2CBF62F126A</identifier>
<identifier type="ark">ark:/67375/WNG-C08B2X5X-4</identifier>
<identifier type="DOI">10.1002/cjce.5450790305</identifier>
<identifier type="ArticleID">CJCE5450790305</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2001 Canadian Society for Chemical Engineering</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/543369DCE374F4EC1DC5CB8BC431A2CBF62F126A/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001872 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001872 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:543369DCE374F4EC1DC5CB8BC431A2CBF62F126A
   |texte=   Modelling of transient mass transfer in liquid and liquid‐solid pulsating systems: Applications and extension to heat transfer
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024