Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers

Identifieur interne : 001662 ( Istex/Corpus ); précédent : 001661; suivant : 001663

Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers

Auteurs : Delphine Rutot ; Emmanuel Duquesne ; Isabelle Ydens ; Philippe Degée ; Philippe Dubois

Source :

RBID : ISTEX:AE845539DD5B2EF397BAE88D141CE1EACA990589

English descriptors

Abstract

Abstract: Biodegradable brush-like amphiphilic graft copolymers were synthesized by covalently grafting poly(ε-caprolactone) PCL sequences onto a natural and mainly linear α(1–6) exopolysaccharide backbone, i.e. dextran. A three-step procedure is proposed to control the synthesis which consists in the reversible protection of the hydroxyl groups of the polysaccharide backbone by silylation, followed by the ring-opening polymerization of ε-caprolactone initiated by the remaining free hydroxyl groups of the partially silylated dextran after adequate activation into Al alkoxide active species. The third and final step involves the deprotection of the polysaccharide hydroxyl groups under very mild conditions. The high efficiency of grafting and the control over the graft molecular weight and molecular weight distribution rely upon the well-known “living” character of the coordination-insertion mechanism of the ring-opening polymerization that is initiated by aluminum alkoxides. Poly(ε-caprolactone)-grafted dextran copolymers with precise composition and well controlled number and length of PCL grafts were incorporated into PCL/granular corn starch composites by melt kneading at 130 °C. When located at the filler/matrix interface, the copolymers proved to be very efficient compatibilizers, enhancing the interfacial adhesion, and accordingly the mechanical properties of the composite materials as evidenced by tensile testing. To ensure the migration of the amphiphilic graft copolymer at the starch/PCL interface, it is better to first precipitate it onto the filler surface or to blend it with the starch granules before melt blending with the polyester matrix.

Url:
DOI: 10.1016/S0141-3910(01)00142-2

Links to Exploration step

ISTEX:AE845539DD5B2EF397BAE88D141CE1EACA990589

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</title>
<author>
<name sortKey="Rutot, Delphine" sort="Rutot, Delphine" uniqKey="Rutot D" first="Delphine" last="Rutot">Delphine Rutot</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duquesne, Emmanuel" sort="Duquesne, Emmanuel" uniqKey="Duquesne E" first="Emmanuel" last="Duquesne">Emmanuel Duquesne</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ydens, Isabelle" sort="Ydens, Isabelle" uniqKey="Ydens I" first="Isabelle" last="Ydens">Isabelle Ydens</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Degee, Philippe" sort="Degee, Philippe" uniqKey="Degee P" first="Philippe" last="Degée">Philippe Degée</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dubois, Philippe" sort="Dubois, Philippe" uniqKey="Dubois P" first="Philippe" last="Dubois">Philippe Dubois</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: philippe.dubois@umh.ac.be</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AE845539DD5B2EF397BAE88D141CE1EACA990589</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0141-3910(01)00142-2</idno>
<idno type="url">https://api.istex.fr/document/AE845539DD5B2EF397BAE88D141CE1EACA990589/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001662</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001662</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</title>
<author>
<name sortKey="Rutot, Delphine" sort="Rutot, Delphine" uniqKey="Rutot D" first="Delphine" last="Rutot">Delphine Rutot</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duquesne, Emmanuel" sort="Duquesne, Emmanuel" uniqKey="Duquesne E" first="Emmanuel" last="Duquesne">Emmanuel Duquesne</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ydens, Isabelle" sort="Ydens, Isabelle" uniqKey="Ydens I" first="Isabelle" last="Ydens">Isabelle Ydens</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Degee, Philippe" sort="Degee, Philippe" uniqKey="Degee P" first="Philippe" last="Degée">Philippe Degée</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dubois, Philippe" sort="Dubois, Philippe" uniqKey="Dubois P" first="Philippe" last="Dubois">Philippe Dubois</name>
<affiliation>
<mods:affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: philippe.dubois@umh.ac.be</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Polymer Degradation and Stability</title>
<title level="j" type="abbrev">PDST</title>
<idno type="ISSN">0141-3910</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">73</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="561">561</biblScope>
<biblScope unit="page" to="566">566</biblScope>
</imprint>
<idno type="ISSN">0141-3910</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0141-3910</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aliphatic polyesters</term>
<term>Aluminum alkoxides</term>
<term>Amphiphilic</term>
<term>Amphiphilic copolymers</term>
<term>Amphiphilic graft copolymers</term>
<term>Average degree</term>
<term>Biodegradable polymers</term>
<term>Catalytic amount</term>
<term>Compatibilized composites</term>
<term>Composite materials</term>
<term>Constant deformation rate</term>
<term>Copolymer</term>
<term>Dextran</term>
<term>Dextran copolymers</term>
<term>Dubois</term>
<term>Dumbbell specimens</term>
<term>Elastic modulus</term>
<term>Elsevier science</term>
<term>Fracture surface</term>
<term>Free hydroxyl groups</term>
<term>Graft</term>
<term>Graft copolymer</term>
<term>Graft copolymers</term>
<term>Graft length</term>
<term>Hydroxyl</term>
<term>Hydroxyl groups</term>
<term>Interfacial adhesion</term>
<term>Ller</term>
<term>Ller surface</term>
<term>Matrix</term>
<term>Mechanical properties</term>
<term>Mild conditions</term>
<term>Modulus</term>
<term>Molecular weight</term>
<term>Molecular weight distribution</term>
<term>Pgd1</term>
<term>Polyester matrix</term>
<term>Polymer</term>
<term>Polymer degradation</term>
<term>Polysaccharide</term>
<term>Polysaccharide backbone</term>
<term>Reversible protection</term>
<term>Rutot</term>
<term>Silylated</term>
<term>Silylated dextran</term>
<term>Starch</term>
<term>Starch blends</term>
<term>Starch content</term>
<term>Starch granules</term>
<term>Starch surface</term>
<term>Tensile properties</term>
<term>Weight fraction</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aliphatic polyesters</term>
<term>Aluminum alkoxides</term>
<term>Amphiphilic</term>
<term>Amphiphilic copolymers</term>
<term>Amphiphilic graft copolymers</term>
<term>Average degree</term>
<term>Biodegradable polymers</term>
<term>Catalytic amount</term>
<term>Compatibilized composites</term>
<term>Composite materials</term>
<term>Constant deformation rate</term>
<term>Copolymer</term>
<term>Dextran</term>
<term>Dextran copolymers</term>
<term>Dubois</term>
<term>Dumbbell specimens</term>
<term>Elastic modulus</term>
<term>Elsevier science</term>
<term>Fracture surface</term>
<term>Free hydroxyl groups</term>
<term>Graft</term>
<term>Graft copolymer</term>
<term>Graft copolymers</term>
<term>Graft length</term>
<term>Hydroxyl</term>
<term>Hydroxyl groups</term>
<term>Interfacial adhesion</term>
<term>Ller</term>
<term>Ller surface</term>
<term>Matrix</term>
<term>Mechanical properties</term>
<term>Mild conditions</term>
<term>Modulus</term>
<term>Molecular weight</term>
<term>Molecular weight distribution</term>
<term>Pgd1</term>
<term>Polyester matrix</term>
<term>Polymer</term>
<term>Polymer degradation</term>
<term>Polysaccharide</term>
<term>Polysaccharide backbone</term>
<term>Reversible protection</term>
<term>Rutot</term>
<term>Silylated</term>
<term>Silylated dextran</term>
<term>Starch</term>
<term>Starch blends</term>
<term>Starch content</term>
<term>Starch granules</term>
<term>Starch surface</term>
<term>Tensile properties</term>
<term>Weight fraction</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Biodegradable brush-like amphiphilic graft copolymers were synthesized by covalently grafting poly(ε-caprolactone) PCL sequences onto a natural and mainly linear α(1–6) exopolysaccharide backbone, i.e. dextran. A three-step procedure is proposed to control the synthesis which consists in the reversible protection of the hydroxyl groups of the polysaccharide backbone by silylation, followed by the ring-opening polymerization of ε-caprolactone initiated by the remaining free hydroxyl groups of the partially silylated dextran after adequate activation into Al alkoxide active species. The third and final step involves the deprotection of the polysaccharide hydroxyl groups under very mild conditions. The high efficiency of grafting and the control over the graft molecular weight and molecular weight distribution rely upon the well-known “living” character of the coordination-insertion mechanism of the ring-opening polymerization that is initiated by aluminum alkoxides. Poly(ε-caprolactone)-grafted dextran copolymers with precise composition and well controlled number and length of PCL grafts were incorporated into PCL/granular corn starch composites by melt kneading at 130 °C. When located at the filler/matrix interface, the copolymers proved to be very efficient compatibilizers, enhancing the interfacial adhesion, and accordingly the mechanical properties of the composite materials as evidenced by tensile testing. To ensure the migration of the amphiphilic graft copolymer at the starch/PCL interface, it is better to first precipitate it onto the filler surface or to blend it with the starch granules before melt blending with the polyester matrix.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>copolymer</json:string>
<json:string>dextran</json:string>
<json:string>ller</json:string>
<json:string>graft</json:string>
<json:string>amphiphilic</json:string>
<json:string>hydroxyl</json:string>
<json:string>modulus</json:string>
<json:string>polysaccharide</json:string>
<json:string>tensile properties</json:string>
<json:string>pgd1</json:string>
<json:string>rutot</json:string>
<json:string>silylated</json:string>
<json:string>polymer degradation</json:string>
<json:string>dextran copolymers</json:string>
<json:string>polymer</json:string>
<json:string>free hydroxyl groups</json:string>
<json:string>silylated dextran</json:string>
<json:string>ller surface</json:string>
<json:string>polyester matrix</json:string>
<json:string>molecular weight distribution</json:string>
<json:string>aluminum alkoxides</json:string>
<json:string>constant deformation rate</json:string>
<json:string>amphiphilic copolymers</json:string>
<json:string>starch</json:string>
<json:string>matrix</json:string>
<json:string>dubois</json:string>
<json:string>interfacial adhesion</json:string>
<json:string>mechanical properties</json:string>
<json:string>weight fraction</json:string>
<json:string>starch blends</json:string>
<json:string>elsevier science</json:string>
<json:string>hydroxyl groups</json:string>
<json:string>graft copolymers</json:string>
<json:string>biodegradable polymers</json:string>
<json:string>aliphatic polyesters</json:string>
<json:string>graft length</json:string>
<json:string>reversible protection</json:string>
<json:string>mild conditions</json:string>
<json:string>molecular weight</json:string>
<json:string>amphiphilic graft copolymers</json:string>
<json:string>starch granules</json:string>
<json:string>average degree</json:string>
<json:string>composite materials</json:string>
<json:string>dumbbell specimens</json:string>
<json:string>catalytic amount</json:string>
<json:string>starch content</json:string>
<json:string>starch surface</json:string>
<json:string>elastic modulus</json:string>
<json:string>fracture surface</json:string>
<json:string>polysaccharide backbone</json:string>
<json:string>graft copolymer</json:string>
<json:string>compatibilized composites</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Delphine Rutot</name>
<affiliations>
<json:string>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Emmanuel Duquesne</name>
<affiliations>
<json:string>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Isabelle Ydens</name>
<affiliations>
<json:string>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philippe Degée</name>
<affiliations>
<json:string>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philippe Dubois</name>
<affiliations>
<json:string>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</json:string>
<json:string>E-mail: philippe.dubois@umh.ac.be</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Poly(ε-caprolactone)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Dextran</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Polysaccharide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Starch</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Amphiphilic copolymers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Ring-opening polymerization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Biodegradable composites</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Polymeric surfactant</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Graft copolymers</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Biodegradable brush-like amphiphilic graft copolymers were synthesized by covalently grafting poly(ε-caprolactone) PCL sequences onto a natural and mainly linear α(1–6) exopolysaccharide backbone, i.e. dextran. A three-step procedure is proposed to control the synthesis which consists in the reversible protection of the hydroxyl groups of the polysaccharide backbone by silylation, followed by the ring-opening polymerization of ε-caprolactone initiated by the remaining free hydroxyl groups of the partially silylated dextran after adequate activation into Al alkoxide active species. The third and final step involves the deprotection of the polysaccharide hydroxyl groups under very mild conditions. The high efficiency of grafting and the control over the graft molecular weight and molecular weight distribution rely upon the well-known “living” character of the coordination-insertion mechanism of the ring-opening polymerization that is initiated by aluminum alkoxides. Poly(ε-caprolactone)-grafted dextran copolymers with precise composition and well controlled number and length of PCL grafts were incorporated into PCL/granular corn starch composites by melt kneading at 130 °C. When located at the filler/matrix interface, the copolymers proved to be very efficient compatibilizers, enhancing the interfacial adhesion, and accordingly the mechanical properties of the composite materials as evidenced by tensile testing. To ensure the migration of the amphiphilic graft copolymer at the starch/PCL interface, it is better to first precipitate it onto the filler surface or to blend it with the starch granules before melt blending with the polyester matrix.</abstract>
<qualityIndicators>
<score>5.449</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 794 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>9</keywordCount>
<abstractCharCount>1670</abstractCharCount>
<pdfWordCount>2713</pdfWordCount>
<pdfCharCount>17550</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>228</abstractWordCount>
</qualityIndicators>
<title>Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</title>
<pii>
<json:string>S0141-3910(01)00142-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Polymer Degradation and Stability</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0141-3910</json:string>
</issn>
<pii>
<json:string>S0141-3910(00)X0074-2</json:string>
</pii>
<volume>73</volume>
<issue>3</issue>
<pages>
<first>561</first>
<last>566</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>polymer science</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>polymers</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0141-3910(01)00142-2</json:string>
</doi>
<id>AE845539DD5B2EF397BAE88D141CE1EACA990589</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/AE845539DD5B2EF397BAE88D141CE1EACA990589/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/AE845539DD5B2EF397BAE88D141CE1EACA990589/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/AE845539DD5B2EF397BAE88D141CE1EACA990589/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science Ltd</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Scheme 1:</note>
<note type="content">Fig. 1: Tensile properties of PCL/granular starch composites : effect of filler content.</note>
<note type="content">Fig. 2: Relative ultimate elongation (εc/εm) vs. granular starch volume fraction (φ).</note>
<note type="content">Table 2: Tensile properties of PCL/granular starch (60:40) blends added with 5 wt.% of PCL-grafted dextran PGDx precipitated at the filler surface (constant deformation rate of 50 mm/min). Effect of copolymer composition (weight fraction in PCL graft, FPCL) and average polymerization degree of PCL grafts (DPPCL)</note>
<note type="content">Table 1: Tensile properties of PCL/granular starch (60:40) blends added with PCL-grafted dextran copolymer PGD1 (constant deformation rate of 200 mm/min). Addition of PGD1 (FPCL=0.65 and DPPCL=13) first to molten PCL, followed by the addition of starch</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Delphine</forename>
<surname>Rutot</surname>
</persName>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Emmanuel</forename>
<surname>Duquesne</surname>
</persName>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Isabelle</forename>
<surname>Ydens</surname>
</persName>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Philippe</forename>
<surname>Degée</surname>
</persName>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Philippe</forename>
<surname>Dubois</surname>
</persName>
<email>philippe.dubois@umh.ac.be</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +32-0-65-373481; fax: +32-0-65-373484</p>
</note>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
</author>
<idno type="istex">AE845539DD5B2EF397BAE88D141CE1EACA990589</idno>
<idno type="DOI">10.1016/S0141-3910(01)00142-2</idno>
<idno type="PII">S0141-3910(01)00142-2</idno>
</analytic>
<monogr>
<title level="j">Polymer Degradation and Stability</title>
<title level="j" type="abbrev">PDST</title>
<idno type="pISSN">0141-3910</idno>
<idno type="PII">S0141-3910(00)X0074-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">73</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="561">561</biblScope>
<biblScope unit="page" to="566">566</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Biodegradable brush-like amphiphilic graft copolymers were synthesized by covalently grafting poly(ε-caprolactone) PCL sequences onto a natural and mainly linear α(1–6) exopolysaccharide backbone, i.e. dextran. A three-step procedure is proposed to control the synthesis which consists in the reversible protection of the hydroxyl groups of the polysaccharide backbone by silylation, followed by the ring-opening polymerization of ε-caprolactone initiated by the remaining free hydroxyl groups of the partially silylated dextran after adequate activation into Al alkoxide active species. The third and final step involves the deprotection of the polysaccharide hydroxyl groups under very mild conditions. The high efficiency of grafting and the control over the graft molecular weight and molecular weight distribution rely upon the well-known “living” character of the coordination-insertion mechanism of the ring-opening polymerization that is initiated by aluminum alkoxides. Poly(ε-caprolactone)-grafted dextran copolymers with precise composition and well controlled number and length of PCL grafts were incorporated into PCL/granular corn starch composites by melt kneading at 130 °C. When located at the filler/matrix interface, the copolymers proved to be very efficient compatibilizers, enhancing the interfacial adhesion, and accordingly the mechanical properties of the composite materials as evidenced by tensile testing. To ensure the migration of the amphiphilic graft copolymer at the starch/PCL interface, it is better to first precipitate it onto the filler surface or to blend it with the starch granules before melt blending with the polyester matrix.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Poly(ε-caprolactone)</term>
</item>
<item>
<term>Dextran</term>
</item>
<item>
<term>Polysaccharide</term>
</item>
<item>
<term>Starch</term>
</item>
<item>
<term>Amphiphilic copolymers</term>
</item>
<item>
<term>Ring-opening polymerization</term>
</item>
<item>
<term>Biodegradable composites</term>
</item>
<item>
<term>Polymeric surfactant</term>
</item>
<item>
<term>Graft copolymers</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/AE845539DD5B2EF397BAE88D141CE1EACA990589/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="sc1" NDATA="IMAGE" name="sc1"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>PDST</jid>
<aid>3481</aid>
<ce:pii>S0141-3910(01)00142-2</ce:pii>
<ce:doi>10.1016/S0141-3910(01)00142-2</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</ce:title>
<ce:author-group>
<ce:author>
<ce:initials>D.</ce:initials>
<ce:given-name>Delphine</ce:given-name>
<ce:surname>Rutot</ce:surname>
</ce:author>
<ce:author>
<ce:initials>E.</ce:initials>
<ce:given-name>Emmanuel</ce:given-name>
<ce:surname>Duquesne</ce:surname>
</ce:author>
<ce:author>
<ce:initials>I.</ce:initials>
<ce:given-name>Isabelle</ce:given-name>
<ce:surname>Ydens</ce:surname>
</ce:author>
<ce:author>
<ce:initials>P.</ce:initials>
<ce:given-name>Philippe</ce:given-name>
<ce:surname>Degée</ce:surname>
</ce:author>
<ce:author>
<ce:initials>P.</ce:initials>
<ce:given-name>Philippe</ce:given-name>
<ce:surname>Dubois</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:e-address type="email">philippe.dubois@umh.ac.be</ce:e-address>
</ce:author>
<ce:affiliation>
<ce:textfn>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label></ce:label>
<ce:text>Corresponding author. Tel.: +32-0-65-373481; fax: +32-0-65-373484</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="19" month="4" year="2001"></ce:date-received>
<ce:date-accepted day="7" month="5" year="2001"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Biodegradable brush-like amphiphilic graft copolymers were synthesized by covalently grafting poly(ε-caprolactone) PCL sequences onto a natural and mainly linear α(1–6) exopolysaccharide backbone, i.e. dextran. A three-step procedure is proposed to control the synthesis which consists in the reversible protection of the hydroxyl groups of the polysaccharide backbone by silylation, followed by the ring-opening polymerization of ε-caprolactone initiated by the remaining free hydroxyl groups of the partially silylated dextran after adequate activation into Al alkoxide active species. The third and final step involves the deprotection of the polysaccharide hydroxyl groups under very mild conditions. The high efficiency of grafting and the control over the graft molecular weight and molecular weight distribution rely upon the well-known “living” character of the coordination-insertion mechanism of the ring-opening polymerization that is initiated by aluminum alkoxides. Poly(ε-caprolactone)-grafted dextran copolymers with precise composition and well controlled number and length of PCL grafts were incorporated into PCL/granular corn starch composites by melt kneading at 130 °C. When located at the filler/matrix interface, the copolymers proved to be very efficient compatibilizers, enhancing the interfacial adhesion, and accordingly the mechanical properties of the composite materials as evidenced by tensile testing. To ensure the migration of the amphiphilic graft copolymer at the starch/PCL interface, it is better to first precipitate it onto the filler surface or to blend it with the starch granules before melt blending with the polyester matrix.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Poly(ε-caprolactone)</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Dextran</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Polysaccharide</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Starch</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Amphiphilic copolymers</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Ring-opening polymerization</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Biodegradable composites</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Polymeric surfactant</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Graft copolymers</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Delphine</namePart>
<namePart type="family">Rutot</namePart>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emmanuel</namePart>
<namePart type="family">Duquesne</namePart>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Ydens</namePart>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Degée</namePart>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Dubois</namePart>
<affiliation>Laboratory of Polymeric and Composite Materials, University of Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium</affiliation>
<affiliation>E-mail: philippe.dubois@umh.ac.be</affiliation>
<description>Corresponding author. Tel.: +32-0-65-373481; fax: +32-0-65-373484</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Biodegradable brush-like amphiphilic graft copolymers were synthesized by covalently grafting poly(ε-caprolactone) PCL sequences onto a natural and mainly linear α(1–6) exopolysaccharide backbone, i.e. dextran. A three-step procedure is proposed to control the synthesis which consists in the reversible protection of the hydroxyl groups of the polysaccharide backbone by silylation, followed by the ring-opening polymerization of ε-caprolactone initiated by the remaining free hydroxyl groups of the partially silylated dextran after adequate activation into Al alkoxide active species. The third and final step involves the deprotection of the polysaccharide hydroxyl groups under very mild conditions. The high efficiency of grafting and the control over the graft molecular weight and molecular weight distribution rely upon the well-known “living” character of the coordination-insertion mechanism of the ring-opening polymerization that is initiated by aluminum alkoxides. Poly(ε-caprolactone)-grafted dextran copolymers with precise composition and well controlled number and length of PCL grafts were incorporated into PCL/granular corn starch composites by melt kneading at 130 °C. When located at the filler/matrix interface, the copolymers proved to be very efficient compatibilizers, enhancing the interfacial adhesion, and accordingly the mechanical properties of the composite materials as evidenced by tensile testing. To ensure the migration of the amphiphilic graft copolymer at the starch/PCL interface, it is better to first precipitate it onto the filler surface or to blend it with the starch granules before melt blending with the polyester matrix.</abstract>
<note type="content">Scheme 1: </note>
<note type="content">Fig. 1: Tensile properties of PCL/granular starch composites : effect of filler content.</note>
<note type="content">Fig. 2: Relative ultimate elongation (εc/εm) vs. granular starch volume fraction (φ).</note>
<note type="content">Table 2: Tensile properties of PCL/granular starch (60:40) blends added with 5 wt.% of PCL-grafted dextran PGDx precipitated at the filler surface (constant deformation rate of 50 mm/min). Effect of copolymer composition (weight fraction in PCL graft, FPCL) and average polymerization degree of PCL grafts (DPPCL)</note>
<note type="content">Table 1: Tensile properties of PCL/granular starch (60:40) blends added with PCL-grafted dextran copolymer PGD1 (constant deformation rate of 200 mm/min). Addition of PGD1 (FPCL=0.65 and DPPCL=13) first to molten PCL, followed by the addition of starch</note>
<subject>
<genre>Keywords</genre>
<topic>Poly(ε-caprolactone)</topic>
<topic>Dextran</topic>
<topic>Polysaccharide</topic>
<topic>Starch</topic>
<topic>Amphiphilic copolymers</topic>
<topic>Ring-opening polymerization</topic>
<topic>Biodegradable composites</topic>
<topic>Polymeric surfactant</topic>
<topic>Graft copolymers</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Polymer Degradation and Stability</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>PDST</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
</originInfo>
<identifier type="ISSN">0141-3910</identifier>
<identifier type="PII">S0141-3910(00)X0074-2</identifier>
<part>
<date>2001</date>
<detail type="volume">
<number>73</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>379</start>
<end>572</end>
</extent>
<extent unit="pages">
<start>561</start>
<end>566</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">AE845539DD5B2EF397BAE88D141CE1EACA990589</identifier>
<identifier type="ark">ark:/67375/6H6-D5CJSXMT-1</identifier>
<identifier type="DOI">10.1016/S0141-3910(01)00142-2</identifier>
<identifier type="PII">S0141-3910(01)00142-2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/AE845539DD5B2EF397BAE88D141CE1EACA990589/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001662 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001662 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:AE845539DD5B2EF397BAE88D141CE1EACA990589
   |texte=   Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024