Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CVP-based optimal control of an industrial depropanizer column

Identifieur interne : 000E23 ( Istex/Corpus ); précédent : 000E22; suivant : 000E24

CVP-based optimal control of an industrial depropanizer column

Auteurs : M. Fikar ; M. A. Latifi ; J. P. Corriou ; Y. Creff

Source :

RBID : ISTEX:C545BD57EEF0639C52F55F352A07CC708487C468

English descriptors

Abstract

Abstract: In this contribution we analyze an industrial multi-component depropanizer model and show how to rewrite the original model to index-one formulation that is well adapted to dynamic optimization. The optimal control problems are then studied with the aim of determination of the optimal output trajectories for minimum changeover time requirements and disturbance rejection. The problems studied are typical situations that frequently occur in the industrial plant. The optimization method used is the control vector parametrization (CVP) which consists in converting the original problem into a non-linear programming (NLP) problem which was solved by a successive quadratic programming (SQP) method. The resulting profiles can be utilized as setpoints for the existing real plant control.

Url:
DOI: 10.1016/S0098-1354(00)00355-0

Links to Exploration step

ISTEX:C545BD57EEF0639C52F55F352A07CC708487C468

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>CVP-based optimal control of an industrial depropanizer column</title>
<author>
<name sortKey="Fikar, M" sort="Fikar, M" uniqKey="Fikar M" first="M." last="Fikar">M. Fikar</name>
<affiliation>
<mods:affiliation>Department of Process Control, CHTF STU, Radlinského 9, 818 37 Bratislava, Slovakia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Latifi, M A" sort="Latifi, M A" uniqKey="Latifi M" first="M. A." last="Latifi">M. A. Latifi</name>
<affiliation>
<mods:affiliation>Corresponding author. Tel.: +33-383-175234; fax: +33-383-175326.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: latifi@ensic.u-nancy.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Creff, Y" sort="Creff, Y" uniqKey="Creff Y" first="Y." last="Creff">Y. Creff</name>
<affiliation>
<mods:affiliation>Centre de Recherche d'Elf Solaize, B.P. 22, Chemin du canal, 69360 Solaize, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C545BD57EEF0639C52F55F352A07CC708487C468</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0098-1354(00)00355-0</idno>
<idno type="url">https://api.istex.fr/document/C545BD57EEF0639C52F55F352A07CC708487C468/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E23</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">CVP-based optimal control of an industrial depropanizer column</title>
<author>
<name sortKey="Fikar, M" sort="Fikar, M" uniqKey="Fikar M" first="M." last="Fikar">M. Fikar</name>
<affiliation>
<mods:affiliation>Department of Process Control, CHTF STU, Radlinského 9, 818 37 Bratislava, Slovakia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Latifi, M A" sort="Latifi, M A" uniqKey="Latifi M" first="M. A." last="Latifi">M. A. Latifi</name>
<affiliation>
<mods:affiliation>Corresponding author. Tel.: +33-383-175234; fax: +33-383-175326.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: latifi@ensic.u-nancy.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corriou, J P" sort="Corriou, J P" uniqKey="Corriou J" first="J. P." last="Corriou">J. P. Corriou</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Creff, Y" sort="Creff, Y" uniqKey="Creff Y" first="Y." last="Creff">Y. Creff</name>
<affiliation>
<mods:affiliation>Centre de Recherche d'Elf Solaize, B.P. 22, Chemin du canal, 69360 Solaize, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Computers and Chemical Engineering</title>
<title level="j" type="abbrev">CACE</title>
<idno type="ISSN">0098-1354</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">2–7</biblScope>
<biblScope unit="page" from="909">909</biblScope>
<biblScope unit="page" to="915">915</biblScope>
</imprint>
<idno type="ISSN">0098-1354</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0098-1354</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebraic equations</term>
<term>Chemical engineering</term>
<term>Column model</term>
<term>Computers chemical engineering</term>
<term>Condenser</term>
<term>Constant control</term>
<term>Constant pressure drop</term>
<term>Constraint</term>
<term>Continuous derivatives</term>
<term>Control segments</term>
<term>Control trajectories</term>
<term>Control trajectory</term>
<term>Control variables</term>
<term>Cost function</term>
<term>Depropanizer</term>
<term>Derivative</term>
<term>Differential equations</term>
<term>Distillation column</term>
<term>Disturbance rejection</term>
<term>Dynamic optimization</term>
<term>Elsevier science</term>
<term>Energy balances</term>
<term>Equal length</term>
<term>Feed characteristics</term>
<term>Feed composition</term>
<term>Fikar</term>
<term>Final derivatives</term>
<term>Final time</term>
<term>Final times</term>
<term>First half</term>
<term>First phase</term>
<term>Hydrodynamic models</term>
<term>Impurity</term>
<term>Industrial depropanizer column</term>
<term>Internal energy</term>
<term>Kmol</term>
<term>Last control segment</term>
<term>Molar</term>
<term>Molar volumes</term>
<term>Negligible differences</term>
<term>Optimal control problems</term>
<term>Optimization</term>
<term>Optimization method</term>
<term>Optimization problem</term>
<term>Optimized</term>
<term>Optimized control segments</term>
<term>Original model</term>
<term>Original problem</term>
<term>Other hand</term>
<term>Output variables</term>
<term>Partial flows</term>
<term>Partial molar flows</term>
<term>Reboiler</term>
<term>Reboiler duty</term>
<term>Reflux flow rate</term>
<term>Setpoint change</term>
<term>Simulation</term>
<term>State variables</term>
<term>Steady state</term>
<term>Time derivatives</term>
<term>Time formulation</term>
<term>Time problem</term>
<term>Trajectory</term>
<term>Typical situations</term>
<term>Value unit temperature pressure</term>
<term>Vapor molar flow</term>
<term>Vapor molar flowrate</term>
<term>Vapor phases</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Algebraic equations</term>
<term>Chemical engineering</term>
<term>Column model</term>
<term>Computers chemical engineering</term>
<term>Condenser</term>
<term>Constant control</term>
<term>Constant pressure drop</term>
<term>Constraint</term>
<term>Continuous derivatives</term>
<term>Control segments</term>
<term>Control trajectories</term>
<term>Control trajectory</term>
<term>Control variables</term>
<term>Cost function</term>
<term>Depropanizer</term>
<term>Derivative</term>
<term>Differential equations</term>
<term>Distillation column</term>
<term>Disturbance rejection</term>
<term>Dynamic optimization</term>
<term>Elsevier science</term>
<term>Energy balances</term>
<term>Equal length</term>
<term>Feed characteristics</term>
<term>Feed composition</term>
<term>Fikar</term>
<term>Final derivatives</term>
<term>Final time</term>
<term>Final times</term>
<term>First half</term>
<term>First phase</term>
<term>Hydrodynamic models</term>
<term>Impurity</term>
<term>Industrial depropanizer column</term>
<term>Internal energy</term>
<term>Kmol</term>
<term>Last control segment</term>
<term>Molar</term>
<term>Molar volumes</term>
<term>Negligible differences</term>
<term>Optimal control problems</term>
<term>Optimization</term>
<term>Optimization method</term>
<term>Optimization problem</term>
<term>Optimized</term>
<term>Optimized control segments</term>
<term>Original model</term>
<term>Original problem</term>
<term>Other hand</term>
<term>Output variables</term>
<term>Partial flows</term>
<term>Partial molar flows</term>
<term>Reboiler</term>
<term>Reboiler duty</term>
<term>Reflux flow rate</term>
<term>Setpoint change</term>
<term>Simulation</term>
<term>State variables</term>
<term>Steady state</term>
<term>Time derivatives</term>
<term>Time formulation</term>
<term>Time problem</term>
<term>Trajectory</term>
<term>Typical situations</term>
<term>Value unit temperature pressure</term>
<term>Vapor molar flow</term>
<term>Vapor molar flowrate</term>
<term>Vapor phases</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: In this contribution we analyze an industrial multi-component depropanizer model and show how to rewrite the original model to index-one formulation that is well adapted to dynamic optimization. The optimal control problems are then studied with the aim of determination of the optimal output trajectories for minimum changeover time requirements and disturbance rejection. The problems studied are typical situations that frequently occur in the industrial plant. The optimization method used is the control vector parametrization (CVP) which consists in converting the original problem into a non-linear programming (NLP) problem which was solved by a successive quadratic programming (SQP) method. The resulting profiles can be utilized as setpoints for the existing real plant control.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>fikar</json:string>
<json:string>final time</json:string>
<json:string>reboiler</json:string>
<json:string>molar</json:string>
<json:string>control segments</json:string>
<json:string>depropanizer</json:string>
<json:string>condenser</json:string>
<json:string>chemical engineering</json:string>
<json:string>kmol</json:string>
<json:string>optimized</json:string>
<json:string>optimization</json:string>
<json:string>derivative</json:string>
<json:string>disturbance rejection</json:string>
<json:string>control variables</json:string>
<json:string>distillation column</json:string>
<json:string>typical situations</json:string>
<json:string>algebraic equations</json:string>
<json:string>impurity</json:string>
<json:string>simulation</json:string>
<json:string>feed composition</json:string>
<json:string>optimal control problems</json:string>
<json:string>dynamic optimization</json:string>
<json:string>steady state</json:string>
<json:string>constant control</json:string>
<json:string>setpoint change</json:string>
<json:string>trajectory</json:string>
<json:string>constraint</json:string>
<json:string>computers chemical engineering</json:string>
<json:string>hydrodynamic models</json:string>
<json:string>internal energy</json:string>
<json:string>vapor phases</json:string>
<json:string>original model</json:string>
<json:string>molar volumes</json:string>
<json:string>constant pressure drop</json:string>
<json:string>reboiler duty</json:string>
<json:string>optimization method</json:string>
<json:string>continuous derivatives</json:string>
<json:string>vapor molar flowrate</json:string>
<json:string>original problem</json:string>
<json:string>final times</json:string>
<json:string>control trajectories</json:string>
<json:string>negligible differences</json:string>
<json:string>reflux flow rate</json:string>
<json:string>feed characteristics</json:string>
<json:string>output variables</json:string>
<json:string>value unit temperature pressure</json:string>
<json:string>elsevier science</json:string>
<json:string>optimized control segments</json:string>
<json:string>time derivatives</json:string>
<json:string>column model</json:string>
<json:string>final derivatives</json:string>
<json:string>industrial depropanizer column</json:string>
<json:string>time problem</json:string>
<json:string>optimization problem</json:string>
<json:string>first half</json:string>
<json:string>other hand</json:string>
<json:string>last control segment</json:string>
<json:string>first phase</json:string>
<json:string>differential equations</json:string>
<json:string>control trajectory</json:string>
<json:string>equal length</json:string>
<json:string>time formulation</json:string>
<json:string>cost function</json:string>
<json:string>vapor molar flow</json:string>
<json:string>energy balances</json:string>
<json:string>partial molar flows</json:string>
<json:string>partial flows</json:string>
<json:string>state variables</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>M. Fikar</name>
<affiliations>
<json:string>Department of Process Control, CHTF STU, Radlinského 9, 818 37 Bratislava, Slovakia</json:string>
</affiliations>
</json:item>
<json:item>
<name>M.A. Latifi</name>
<affiliations>
<json:string>Corresponding author. Tel.: +33-383-175234; fax: +33-383-175326.</json:string>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</json:string>
<json:string>E-mail: latifi@ensic.u-nancy.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>J.P. Corriou</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Y. Creff</name>
<affiliations>
<json:string>Centre de Recherche d'Elf Solaize, B.P. 22, Chemin du canal, 69360 Solaize, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Dynamic optimization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Distillation column</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Changeover problems</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Disturbance rejection</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>In this contribution we analyze an industrial multi-component depropanizer model and show how to rewrite the original model to index-one formulation that is well adapted to dynamic optimization. The optimal control problems are then studied with the aim of determination of the optimal output trajectories for minimum changeover time requirements and disturbance rejection. The problems studied are typical situations that frequently occur in the industrial plant. The optimization method used is the control vector parametrization (CVP) which consists in converting the original problem into a non-linear programming (NLP) problem which was solved by a successive quadratic programming (SQP) method. The resulting profiles can be utilized as setpoints for the existing real plant control.</abstract>
<qualityIndicators>
<score>5.077</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>591 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>789</abstractCharCount>
<pdfWordCount>3721</pdfWordCount>
<pdfCharCount>21928</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>113</abstractWordCount>
</qualityIndicators>
<title>CVP-based optimal control of an industrial depropanizer column</title>
<pii>
<json:string>S0098-1354(00)00355-0</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Computers and Chemical Engineering</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0098-1354</json:string>
</issn>
<pii>
<json:string>S0098-1354(00)X0202-5</json:string>
</pii>
<volume>24</volume>
<issue>2–7</issue>
<pages>
<first>909</first>
<last>915</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>engineering, chemical</json:string>
<json:string>computer science, interdisciplinary applications</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>physique</json:string>
<json:string>domaines classiques de la physique (y compris les applications)</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0098-1354(00)00355-0</json:string>
</doi>
<id>C545BD57EEF0639C52F55F352A07CC708487C468</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C545BD57EEF0639C52F55F352A07CC708487C468/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C545BD57EEF0639C52F55F352A07CC708487C468/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C545BD57EEF0639C52F55F352A07CC708487C468/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">CVP-based optimal control of an industrial depropanizer column</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>2000</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">CVP-based optimal control of an industrial depropanizer column</title>
<author xml:id="author-0000">
<persName>
<forename type="first">M.</forename>
<surname>Fikar</surname>
</persName>
<affiliation>Department of Process Control, CHTF STU, Radlinského 9, 818 37 Bratislava, Slovakia</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">M.A.</forename>
<surname>Latifi</surname>
</persName>
<email>latifi@ensic.u-nancy.fr</email>
<affiliation>Corresponding author. Tel.: +33-383-175234; fax: +33-383-175326.</affiliation>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">J.P.</forename>
<surname>Corriou</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Y.</forename>
<surname>Creff</surname>
</persName>
<affiliation>Centre de Recherche d'Elf Solaize, B.P. 22, Chemin du canal, 69360 Solaize, France</affiliation>
</author>
<idno type="istex">C545BD57EEF0639C52F55F352A07CC708487C468</idno>
<idno type="DOI">10.1016/S0098-1354(00)00355-0</idno>
<idno type="PII">S0098-1354(00)00355-0</idno>
</analytic>
<monogr>
<title level="j">Computers and Chemical Engineering</title>
<title level="j" type="abbrev">CACE</title>
<idno type="pISSN">0098-1354</idno>
<idno type="PII">S0098-1354(00)X0202-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">2–7</biblScope>
<biblScope unit="page" from="909">909</biblScope>
<biblScope unit="page" to="915">915</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>In this contribution we analyze an industrial multi-component depropanizer model and show how to rewrite the original model to index-one formulation that is well adapted to dynamic optimization. The optimal control problems are then studied with the aim of determination of the optimal output trajectories for minimum changeover time requirements and disturbance rejection. The problems studied are typical situations that frequently occur in the industrial plant. The optimization method used is the control vector parametrization (CVP) which consists in converting the original problem into a non-linear programming (NLP) problem which was solved by a successive quadratic programming (SQP) method. The resulting profiles can be utilized as setpoints for the existing real plant control.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Dynamic optimization</term>
</item>
<item>
<term>Distillation column</term>
</item>
<item>
<term>Changeover problems</term>
</item>
<item>
<term>Disturbance rejection</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C545BD57EEF0639C52F55F352A07CC708487C468/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>CACE</jid>
<aid>00003550</aid>
<ce:pii>S0098-1354(00)00355-0</ce:pii>
<ce:doi>10.1016/S0098-1354(00)00355-0</ce:doi>
<ce:copyright type="unknown" year="2000"></ce:copyright>
</item-info>
<head>
<ce:title>CVP-based optimal control of an industrial depropanizer column</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Fikar</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.A.</ce:given-name>
<ce:surname>Latifi</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
<ce:e-address>latifi@ensic.u-nancy.fr</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>J.P.</ce:given-name>
<ce:surname>Corriou</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Y.</ce:given-name>
<ce:surname>Creff</ce:surname>
<ce:cross-ref refid="AFF3">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Department of Process Control, CHTF STU, Radlinského 9, 818 37 Bratislava, Slovakia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>Centre de Recherche d'Elf Solaize, B.P. 22, Chemin du canal, 69360 Solaize, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +33-383-175234; fax: +33-383-175326.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>In this contribution we analyze an industrial multi-component depropanizer model and show how to rewrite the original model to index-one formulation that is well adapted to dynamic optimization. The optimal control problems are then studied with the aim of determination of the optimal output trajectories for minimum changeover time requirements and disturbance rejection. The problems studied are typical situations that frequently occur in the industrial plant. The optimization method used is the control vector parametrization (CVP) which consists in converting the original problem into a non-linear programming (NLP) problem which was solved by a successive quadratic programming (SQP) method. The resulting profiles can be utilized as setpoints for the existing real plant control.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Dynamic optimization</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Distillation column</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Changeover problems</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Disturbance rejection</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>CVP-based optimal control of an industrial depropanizer column</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>CVP-based optimal control of an industrial depropanizer column</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Fikar</namePart>
<affiliation>Department of Process Control, CHTF STU, Radlinského 9, 818 37 Bratislava, Slovakia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.A.</namePart>
<namePart type="family">Latifi</namePart>
<affiliation>Corresponding author. Tel.: +33-383-175234; fax: +33-383-175326.</affiliation>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</affiliation>
<affiliation>E-mail: latifi@ensic.u-nancy.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.P.</namePart>
<namePart type="family">Corriou</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC B.P.451, 1- rue Grandville, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y.</namePart>
<namePart type="family">Creff</namePart>
<affiliation>Centre de Recherche d'Elf Solaize, B.P. 22, Chemin du canal, 69360 Solaize, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: In this contribution we analyze an industrial multi-component depropanizer model and show how to rewrite the original model to index-one formulation that is well adapted to dynamic optimization. The optimal control problems are then studied with the aim of determination of the optimal output trajectories for minimum changeover time requirements and disturbance rejection. The problems studied are typical situations that frequently occur in the industrial plant. The optimization method used is the control vector parametrization (CVP) which consists in converting the original problem into a non-linear programming (NLP) problem which was solved by a successive quadratic programming (SQP) method. The resulting profiles can be utilized as setpoints for the existing real plant control.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Dynamic optimization</topic>
<topic>Distillation column</topic>
<topic>Changeover problems</topic>
<topic>Disturbance rejection</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Computers and Chemical Engineering</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CACE</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">20000715</dateIssued>
</originInfo>
<identifier type="ISSN">0098-1354</identifier>
<identifier type="PII">S0098-1354(00)X0202-5</identifier>
<part>
<date>20000715</date>
<detail type="volume">
<number>24</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2–7</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>157</start>
<end>1780</end>
</extent>
<extent unit="pages">
<start>909</start>
<end>915</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">C545BD57EEF0639C52F55F352A07CC708487C468</identifier>
<identifier type="ark">ark:/67375/6H6-HFWKD8ZQ-Q</identifier>
<identifier type="DOI">10.1016/S0098-1354(00)00355-0</identifier>
<identifier type="PII">S0098-1354(00)00355-0</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/C545BD57EEF0639C52F55F352A07CC708487C468/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C545BD57EEF0639C52F55F352A07CC708487C468
   |texte=   CVP-based optimal control of an industrial depropanizer column
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024