Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)

Identifieur interne : 000B51 ( Istex/Corpus ); précédent : 000B50; suivant : 000B52

A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)

Auteurs : F. Lapicoue ; J. Lede ; P. Tironneau ; J. Villermaux

Source :

RBID : ISTEX:4067BE21035E53AD55CF2BFA5231BECCAF8423AE

English descriptors

Abstract

Abstract: This paper deals with an original way for carrying out highly endothermic reactions at high temperature under concentrated radiant energy. Three examples of chemical reactions were chosen: thermal direct decompositions of water and of carbon dioxide, and synthesis of nitric oxide from air. In the first part, we present a preliminary theoretical study concerning the thermodynamics and the kinetics of the selected reactions. Then, we describe an experimental system consisting of a “dissociation reactor” located at the focus of either an image furnace or a solar concentrator, and a quenching device in which the hot gases are quickly cooled by mixing with turbulent gas jets. Such a system can store solar energy in the form of chemical compounds such as H2, CO with an energetical yield ranging about 1%. A simple mathematical model points out the importance of quenching phenomena with respect to the considered reactions.

Url:
DOI: 10.1016/0038-092X(85)90005-2

Links to Exploration step

ISTEX:4067BE21035E53AD55CF2BFA5231BECCAF8423AE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</title>
<author>
<name sortKey="Lapicoue, F" sort="Lapicoue, F" uniqKey="Lapicoue F" first="F." last="Lapicoue">F. Lapicoue</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lede, J" sort="Lede, J" uniqKey="Lede J" first="J." last="Lede">J. Lede</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tironneau, P" sort="Tironneau, P" uniqKey="Tironneau P" first="P." last="Tironneau">P. Tironneau</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villermaux, J" sort="Villermaux, J" uniqKey="Villermaux J" first="J." last="Villermaux">J. Villermaux</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4067BE21035E53AD55CF2BFA5231BECCAF8423AE</idno>
<date when="1985" year="1985">1985</date>
<idno type="doi">10.1016/0038-092X(85)90005-2</idno>
<idno type="url">https://api.istex.fr/document/4067BE21035E53AD55CF2BFA5231BECCAF8423AE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B51</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</title>
<author>
<name sortKey="Lapicoue, F" sort="Lapicoue, F" uniqKey="Lapicoue F" first="F." last="Lapicoue">F. Lapicoue</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lede, J" sort="Lede, J" uniqKey="Lede J" first="J." last="Lede">J. Lede</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tironneau, P" sort="Tironneau, P" uniqKey="Tironneau P" first="P." last="Tironneau">P. Tironneau</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Villermaux, J" sort="Villermaux, J" uniqKey="Villermaux J" first="J." last="Villermaux">J. Villermaux</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Solar Energy</title>
<title level="j" type="abbrev">SE</title>
<idno type="ISSN">0038-092X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1985">1985</date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="153">153</biblScope>
<biblScope unit="page" to="166">166</biblScope>
</imprint>
<idno type="ISSN">0038-092X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0038-092X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active species</term>
<term>Annular</term>
<term>Average residence time</term>
<term>Average wall temperature</term>
<term>Best results</term>
<term>Better design</term>
<term>Carbon dioxide</term>
<term>Carbon dioxide dissociation</term>
<term>Carbon dioxide thermolysis</term>
<term>Carbon monoxide</term>
<term>Chem</term>
<term>Chemical reactions</term>
<term>Concentrator</term>
<term>Cooling rate</term>
<term>Cylindrical dissociation reactor</term>
<term>Cylindrical reactor</term>
<term>Dioxide</term>
<term>Direct splitting</term>
<term>Dissociation</term>
<term>Dissociation reactor</term>
<term>Dissociation reactors</term>
<term>Dissociation zone</term>
<term>Endothermic reactions</term>
<term>Energy conversion</term>
<term>Equilibrium composition</term>
<term>Equilibrium concentrations</term>
<term>Flowrate</term>
<term>Good agreement</term>
<term>High temperature</term>
<term>Hydrogen energy</term>
<term>Hydrogen production</term>
<term>Image furnace</term>
<term>Lede</term>
<term>Massic</term>
<term>Massic flowrate</term>
<term>Molar</term>
<term>Molar fraction</term>
<term>Molar fractions</term>
<term>Nitric</term>
<term>Nitric oxide</term>
<term>Nitric oxide synthesis</term>
<term>Oxide</term>
<term>Paper deals</term>
<term>Pergamon press</term>
<term>Phase reaction</term>
<term>Phase reactions</term>
<term>Plug flow reactor</term>
<term>Previous studies</term>
<term>Quenching</term>
<term>Quenching device</term>
<term>Quenching flowrate</term>
<term>Quenching nozzles</term>
<term>Quenching phenomena</term>
<term>Quenching reactor</term>
<term>Radiant energy</term>
<term>Rate constants</term>
<term>Reactor</term>
<term>Recombination reactions</term>
<term>Residence time</term>
<term>Room temperature</term>
<term>Simple approach</term>
<term>Solar concentrator</term>
<term>Solar energy</term>
<term>Solar furnace</term>
<term>Solar radiation</term>
<term>Solar reactor</term>
<term>Thermal power</term>
<term>Thermodynamical equilibrium</term>
<term>Thermolysis</term>
<term>Villermaux</term>
<term>Volumetric</term>
<term>Volumetric flowrate</term>
<term>Water dissociation</term>
<term>Water electrolysis</term>
<term>Water steam</term>
<term>Water thermolysis</term>
<term>Zirconia</term>
<term>Zirconia reactor</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active species</term>
<term>Annular</term>
<term>Average residence time</term>
<term>Average wall temperature</term>
<term>Best results</term>
<term>Better design</term>
<term>Carbon dioxide</term>
<term>Carbon dioxide dissociation</term>
<term>Carbon dioxide thermolysis</term>
<term>Carbon monoxide</term>
<term>Chem</term>
<term>Chemical reactions</term>
<term>Concentrator</term>
<term>Cooling rate</term>
<term>Cylindrical dissociation reactor</term>
<term>Cylindrical reactor</term>
<term>Dioxide</term>
<term>Direct splitting</term>
<term>Dissociation</term>
<term>Dissociation reactor</term>
<term>Dissociation reactors</term>
<term>Dissociation zone</term>
<term>Endothermic reactions</term>
<term>Energy conversion</term>
<term>Equilibrium composition</term>
<term>Equilibrium concentrations</term>
<term>Flowrate</term>
<term>Good agreement</term>
<term>High temperature</term>
<term>Hydrogen energy</term>
<term>Hydrogen production</term>
<term>Image furnace</term>
<term>Lede</term>
<term>Massic</term>
<term>Massic flowrate</term>
<term>Molar</term>
<term>Molar fraction</term>
<term>Molar fractions</term>
<term>Nitric</term>
<term>Nitric oxide</term>
<term>Nitric oxide synthesis</term>
<term>Oxide</term>
<term>Paper deals</term>
<term>Pergamon press</term>
<term>Phase reaction</term>
<term>Phase reactions</term>
<term>Plug flow reactor</term>
<term>Previous studies</term>
<term>Quenching</term>
<term>Quenching device</term>
<term>Quenching flowrate</term>
<term>Quenching nozzles</term>
<term>Quenching phenomena</term>
<term>Quenching reactor</term>
<term>Radiant energy</term>
<term>Rate constants</term>
<term>Reactor</term>
<term>Recombination reactions</term>
<term>Residence time</term>
<term>Room temperature</term>
<term>Simple approach</term>
<term>Solar concentrator</term>
<term>Solar energy</term>
<term>Solar furnace</term>
<term>Solar radiation</term>
<term>Solar reactor</term>
<term>Thermal power</term>
<term>Thermodynamical equilibrium</term>
<term>Thermolysis</term>
<term>Villermaux</term>
<term>Volumetric</term>
<term>Volumetric flowrate</term>
<term>Water dissociation</term>
<term>Water electrolysis</term>
<term>Water steam</term>
<term>Water thermolysis</term>
<term>Zirconia</term>
<term>Zirconia reactor</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: This paper deals with an original way for carrying out highly endothermic reactions at high temperature under concentrated radiant energy. Three examples of chemical reactions were chosen: thermal direct decompositions of water and of carbon dioxide, and synthesis of nitric oxide from air. In the first part, we present a preliminary theoretical study concerning the thermodynamics and the kinetics of the selected reactions. Then, we describe an experimental system consisting of a “dissociation reactor” located at the focus of either an image furnace or a solar concentrator, and a quenching device in which the hot gases are quickly cooled by mixing with turbulent gas jets. Such a system can store solar energy in the form of chemical compounds such as H2, CO with an energetical yield ranging about 1%. A simple mathematical model points out the importance of quenching phenomena with respect to the considered reactions.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>flowrate</json:string>
<json:string>quenching</json:string>
<json:string>nitric</json:string>
<json:string>dissociation reactor</json:string>
<json:string>villermaux</json:string>
<json:string>thermolysis</json:string>
<json:string>image furnace</json:string>
<json:string>lede</json:string>
<json:string>volumetric flowrate</json:string>
<json:string>high temperature</json:string>
<json:string>zirconia</json:string>
<json:string>annular</json:string>
<json:string>nitric oxide</json:string>
<json:string>hydrogen production</json:string>
<json:string>concentrator</json:string>
<json:string>chem</json:string>
<json:string>molar</json:string>
<json:string>solar concentrator</json:string>
<json:string>nitric oxide synthesis</json:string>
<json:string>water thermolysis</json:string>
<json:string>massic flowrate</json:string>
<json:string>massic</json:string>
<json:string>solar energy</json:string>
<json:string>solar reactor</json:string>
<json:string>molar fraction</json:string>
<json:string>plug flow reactor</json:string>
<json:string>cylindrical reactor</json:string>
<json:string>residence time</json:string>
<json:string>carbon dioxide thermolysis</json:string>
<json:string>reactor</json:string>
<json:string>dissociation</json:string>
<json:string>endothermic reactions</json:string>
<json:string>molar fractions</json:string>
<json:string>solar furnace</json:string>
<json:string>dissociation reactors</json:string>
<json:string>zirconia reactor</json:string>
<json:string>carbon dioxide</json:string>
<json:string>hydrogen energy</json:string>
<json:string>average residence time</json:string>
<json:string>quenching flowrate</json:string>
<json:string>quenching nozzles</json:string>
<json:string>quenching phenomena</json:string>
<json:string>carbon monoxide</json:string>
<json:string>quenching reactor</json:string>
<json:string>chemical reactions</json:string>
<json:string>simple approach</json:string>
<json:string>volumetric</json:string>
<json:string>dioxide</json:string>
<json:string>oxide</json:string>
<json:string>direct splitting</json:string>
<json:string>equilibrium concentrations</json:string>
<json:string>dissociation zone</json:string>
<json:string>pergamon press</json:string>
<json:string>carbon dioxide dissociation</json:string>
<json:string>room temperature</json:string>
<json:string>previous studies</json:string>
<json:string>good agreement</json:string>
<json:string>equilibrium composition</json:string>
<json:string>phase reaction</json:string>
<json:string>average wall temperature</json:string>
<json:string>solar radiation</json:string>
<json:string>water dissociation</json:string>
<json:string>recombination reactions</json:string>
<json:string>thermal power</json:string>
<json:string>water electrolysis</json:string>
<json:string>quenching device</json:string>
<json:string>radiant energy</json:string>
<json:string>best results</json:string>
<json:string>energy conversion</json:string>
<json:string>cylindrical dissociation reactor</json:string>
<json:string>water steam</json:string>
<json:string>better design</json:string>
<json:string>paper deals</json:string>
<json:string>active species</json:string>
<json:string>thermodynamical equilibrium</json:string>
<json:string>cooling rate</json:string>
<json:string>phase reactions</json:string>
<json:string>rate constants</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>F. Lapicoue</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Lede</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. Tironneau</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. Villermaux</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>This paper deals with an original way for carrying out highly endothermic reactions at high temperature under concentrated radiant energy. Three examples of chemical reactions were chosen: thermal direct decompositions of water and of carbon dioxide, and synthesis of nitric oxide from air. In the first part, we present a preliminary theoretical study concerning the thermodynamics and the kinetics of the selected reactions. Then, we describe an experimental system consisting of a “dissociation reactor” located at the focus of either an image furnace or a solar concentrator, and a quenching device in which the hot gases are quickly cooled by mixing with turbulent gas jets. Such a system can store solar energy in the form of chemical compounds such as H2, CO with an energetical yield ranging about 1%. A simple mathematical model points out the importance of quenching phenomena with respect to the considered reactions.</abstract>
<qualityIndicators>
<score>6.45</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>540 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>928</abstractCharCount>
<pdfWordCount>4698</pdfWordCount>
<pdfCharCount>26441</pdfCharCount>
<pdfPageCount>14</pdfPageCount>
<abstractWordCount>146</abstractWordCount>
</qualityIndicators>
<title>A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</title>
<pii>
<json:string>0038-092X(85)90005-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>by C. Bamford and C. F. H. Tipper</title>
<language>
<json:string>unknown</json:string>
</language>
</serie>
<host>
<title>Solar Energy</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1985</publicationDate>
<issn>
<json:string>0038-092X</json:string>
</issn>
<pii>
<json:string>S0038-092X(00)X0132-6</json:string>
</pii>
<volume>35</volume>
<issue>2</issue>
<pages>
<first>153</first>
<last>166</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>energy & fuels</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>enabling & strategic technologies</json:string>
<json:string>energy</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>terre, ocean, espace</json:string>
<json:string>geophysique externe</json:string>
</inist>
</categories>
<publicationDate>1985</publicationDate>
<copyrightDate>1985</copyrightDate>
<doi>
<json:string>10.1016/0038-092X(85)90005-2</json:string>
</doi>
<id>4067BE21035E53AD55CF2BFA5231BECCAF8423AE</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/4067BE21035E53AD55CF2BFA5231BECCAF8423AE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/4067BE21035E53AD55CF2BFA5231BECCAF8423AE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4067BE21035E53AD55CF2BFA5231BECCAF8423AE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1985</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</title>
<author xml:id="author-0000">
<persName>
<forename type="first">F.</forename>
<surname>Lapicoue</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">J.</forename>
<surname>Lede</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">P.</forename>
<surname>Tironneau</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">J.</forename>
<surname>Villermaux</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
</author>
<idno type="istex">4067BE21035E53AD55CF2BFA5231BECCAF8423AE</idno>
<idno type="DOI">10.1016/0038-092X(85)90005-2</idno>
<idno type="PII">0038-092X(85)90005-2</idno>
</analytic>
<monogr>
<title level="j">Solar Energy</title>
<title level="j" type="abbrev">SE</title>
<idno type="pISSN">0038-092X</idno>
<idno type="PII">S0038-092X(00)X0132-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1985"></date>
<biblScope unit="volume">35</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="153">153</biblScope>
<biblScope unit="page" to="166">166</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1985</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>This paper deals with an original way for carrying out highly endothermic reactions at high temperature under concentrated radiant energy. Three examples of chemical reactions were chosen: thermal direct decompositions of water and of carbon dioxide, and synthesis of nitric oxide from air. In the first part, we present a preliminary theoretical study concerning the thermodynamics and the kinetics of the selected reactions. Then, we describe an experimental system consisting of a “dissociation reactor” located at the focus of either an image furnace or a solar concentrator, and a quenching device in which the hot gases are quickly cooled by mixing with turbulent gas jets. Such a system can store solar energy in the form of chemical compounds such as H2, CO with an energetical yield ranging about 1%. A simple mathematical model points out the importance of quenching phenomena with respect to the considered reactions.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1985">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/4067BE21035E53AD55CF2BFA5231BECCAF8423AE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>SE</jid>
<aid>85900052</aid>
<ce:pii>0038-092X(85)90005-2</ce:pii>
<ce:doi>10.1016/0038-092X(85)90005-2</ce:doi>
<ce:copyright type="unknown" year="1985"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Article</ce:textfn>
</ce:dochead>
<ce:title>A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>F.</ce:given-name>
<ce:surname>Lapicoue</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Lede</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>P.</ce:given-name>
<ce:surname>Tironneau</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Villermaux</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="13" month="12" year="1983"></ce:date-received>
<ce:date-accepted day="9" month="1" year="1985"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>This paper deals with an original way for carrying out highly endothermic reactions at high temperature under concentrated radiant energy. Three examples of chemical reactions were chosen: thermal direct decompositions of water and of carbon dioxide, and synthesis of nitric oxide from air. In the first part, we present a preliminary theoretical study concerning the thermodynamics and the kinetics of the selected reactions. Then, we describe an experimental system consisting of a “dissociation reactor” located at the focus of either an image furnace or a solar concentrator, and a quenching device in which the hot gases are quickly cooled by mixing with turbulent gas jets. Such a system can store solar energy in the form of chemical compounds such as H
<ce:inf>2</ce:inf>
, CO with an energetical yield ranging about 1%. A simple mathematical model points out the importance of quenching phenomena with respect to the considered reactions.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)</title>
</titleInfo>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Lapicoue</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Lede</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Tironneau</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Villermaux</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC 1, rue Grandville 54042 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1985</dateIssued>
<copyrightDate encoding="w3cdtf">1985</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: This paper deals with an original way for carrying out highly endothermic reactions at high temperature under concentrated radiant energy. Three examples of chemical reactions were chosen: thermal direct decompositions of water and of carbon dioxide, and synthesis of nitric oxide from air. In the first part, we present a preliminary theoretical study concerning the thermodynamics and the kinetics of the selected reactions. Then, we describe an experimental system consisting of a “dissociation reactor” located at the focus of either an image furnace or a solar concentrator, and a quenching device in which the hot gases are quickly cooled by mixing with turbulent gas jets. Such a system can store solar energy in the form of chemical compounds such as H2, CO with an energetical yield ranging about 1%. A simple mathematical model points out the importance of quenching phenomena with respect to the considered reactions.</abstract>
<note type="content">Section title: Article</note>
<relatedItem type="host">
<titleInfo>
<title>Solar Energy</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>SE</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1985</dateIssued>
</originInfo>
<identifier type="ISSN">0038-092X</identifier>
<identifier type="PII">S0038-092X(00)X0132-6</identifier>
<part>
<date>1985</date>
<detail type="volume">
<number>35</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>105</start>
<end>210</end>
</extent>
<extent unit="pages">
<start>153</start>
<end>166</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">4067BE21035E53AD55CF2BFA5231BECCAF8423AE</identifier>
<identifier type="ark">ark:/67375/6H6-2915FCJ9-K</identifier>
<identifier type="DOI">10.1016/0038-092X(85)90005-2</identifier>
<identifier type="PII">0038-092X(85)90005-2</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/4067BE21035E53AD55CF2BFA5231BECCAF8423AE/metadata/json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4067BE21035E53AD55CF2BFA5231BECCAF8423AE
   |texte=   A solar reactor for high-temperature gas phase reactions (water and carbon dioxide thermolysis and nitric oxide synthesis)
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024