Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder

Identifieur interne : 000B37 ( Istex/Corpus ); précédent : 000B36; suivant : 000B38

Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder

Auteurs : Xian-Ming Zhang ; Lian-Fang Feng ; Wen-Xing Chen ; Guo-Hua Hu

Source :

RBID : ISTEX:CF792276482E693A042AD6FDF60A705AF5A1A105

English descriptors

Abstract

This work aims at simulation by particle tracking the local residence time distributions (RTDs) of a co‐rotating twin‐screw extruder using computational fluid dynamics. Simulated results follow reasonably well the trend of experimental results obtained by an in‐line measuring instrument for different screw configurations and feed rates. To analyze the distributive mixing performance and overall efficiency of different types of kneading discs (KDs), mixing parameters such as area stretch ratio, instantaneous efficiency, and time‐average efficiency are calculated. Among KDs with stagger angles 45°, 60°, and 90°, the 90/10/64 with disc gaps is most efficient in terms of distributive mixing. The effects of the disc width and disc gap on the local RTD and distributive mixing are also discussed. This provides a numerical tool for assessing point‐by‐point information on the local RTD, flow, and mixing along the screw extruder. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers

Url:
DOI: 10.1002/pen.21404

Links to Exploration step

ISTEX:CF792276482E693A042AD6FDF60A705AF5A1A105

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
<author>
<name sortKey="Zhang, Xian Ing" sort="Zhang, Xian Ing" uniqKey="Zhang X" first="Xian-Ming" last="Zhang">Xian-Ming Zhang</name>
<affiliation>
<mods:affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Lian Ang" sort="Feng, Lian Ang" uniqKey="Feng L" first="Lian-Fang" last="Feng">Lian-Fang Feng</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fenglf@zju.edu.cn</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wen Ing" sort="Chen, Wen Ing" uniqKey="Chen W" first="Wen-Xing" last="Chen">Wen-Xing Chen</name>
<affiliation>
<mods:affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<affiliation>
<mods:affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Universitaire de France, Maison des Universités, 75005 Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hu@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CF792276482E693A042AD6FDF60A705AF5A1A105</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/pen.21404</idno>
<idno type="url">https://api.istex.fr/document/CF792276482E693A042AD6FDF60A705AF5A1A105/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B37</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
<author>
<name sortKey="Zhang, Xian Ing" sort="Zhang, Xian Ing" uniqKey="Zhang X" first="Xian-Ming" last="Zhang">Xian-Ming Zhang</name>
<affiliation>
<mods:affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Feng, Lian Ang" sort="Feng, Lian Ang" uniqKey="Feng L" first="Lian-Fang" last="Feng">Lian-Fang Feng</name>
<affiliation>
<mods:affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fenglf@zju.edu.cn</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Wen Ing" sort="Chen, Wen Ing" uniqKey="Chen W" first="Wen-Xing" last="Chen">Wen-Xing Chen</name>
<affiliation>
<mods:affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Guo Ua" sort="Hu, Guo Ua" uniqKey="Hu G" first="Guo-Hua" last="Hu">Guo-Hua Hu</name>
<affiliation>
<mods:affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Universitaire de France, Maison des Universités, 75005 Paris, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: hu@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Polymer Engineering & Science</title>
<title level="j" type="alt">POLYMER ENGINEERING AND SCIENCE</title>
<idno type="ISSN">0032-3888</idno>
<idno type="eISSN">1548-2634</idno>
<imprint>
<biblScope unit="vol">49</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1772">1772</biblScope>
<biblScope unit="page" to="1783">1783</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-09">2009-09</date>
</imprint>
<idno type="ISSN">0032-3888</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0032-3888</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aiche</term>
<term>Area stretch</term>
<term>Area stretch ratio</term>
<term>Avalosse</term>
<term>Axial</term>
<term>Axial distance</term>
<term>Axial evolution</term>
<term>Carreau model</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Critical value</term>
<term>Critical values</term>
<term>Delay time</term>
<term>Different mixers</term>
<term>Different percentiles</term>
<term>Different regions</term>
<term>Different screw</term>
<term>Different types</term>
<term>Disc</term>
<term>Disc gaps</term>
<term>Disc width</term>
<term>Distributive</term>
<term>Experimental data</term>
<term>Experimental ones</term>
<term>Experimental results</term>
<term>Experimental validation</term>
<term>Extruder</term>
<term>Feed rate</term>
<term>Flow channel</term>
<term>Generalized newtonian</term>
<term>Hegi</term>
<term>High percentiles</term>
<term>Important role</term>
<term>Initial direction</term>
<term>Initial stage</term>
<term>Inlet section</term>
<term>Intermeshing</term>
<term>Large amount</term>
<term>Larger disc width</term>
<term>Manufacturing technology</term>
<term>Marker</term>
<term>Marker particle</term>
<term>Marker particles</term>
<term>Material surface</term>
<term>Minimal residence time</term>
<term>Mixer</term>
<term>Normal direction</term>
<term>Numerical simulation</term>
<term>Numerical simulations</term>
<term>Other hand</term>
<term>Outlet section</term>
<term>Outlet sections</term>
<term>Percentile</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer engineering</term>
<term>Residence time</term>
<term>Residence time distribution</term>
<term>Same disc width</term>
<term>Screw element</term>
<term>Screw elements</term>
<term>Screw speed</term>
<term>Shear rate</term>
<term>Simulation</term>
<term>Smaller disc width</term>
<term>Statistical theory</term>
<term>Stretch rate</term>
<term>Strong reorientation</term>
<term>Surface area</term>
<term>Test zone</term>
<term>Textile materials</term>
<term>Twin screw extruders</term>
<term>Virtual particles</term>
<term>Zhejiang university</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aiche</term>
<term>Area stretch</term>
<term>Area stretch ratio</term>
<term>Avalosse</term>
<term>Axial</term>
<term>Axial distance</term>
<term>Axial evolution</term>
<term>Carreau model</term>
<term>Contract grant number</term>
<term>Contract grant sponsor</term>
<term>Critical value</term>
<term>Critical values</term>
<term>Delay time</term>
<term>Different mixers</term>
<term>Different percentiles</term>
<term>Different regions</term>
<term>Different screw</term>
<term>Different types</term>
<term>Disc</term>
<term>Disc gaps</term>
<term>Disc width</term>
<term>Distributive</term>
<term>Experimental data</term>
<term>Experimental ones</term>
<term>Experimental results</term>
<term>Experimental validation</term>
<term>Extruder</term>
<term>Feed rate</term>
<term>Flow channel</term>
<term>Generalized newtonian</term>
<term>Hegi</term>
<term>High percentiles</term>
<term>Important role</term>
<term>Initial direction</term>
<term>Initial stage</term>
<term>Inlet section</term>
<term>Intermeshing</term>
<term>Large amount</term>
<term>Larger disc width</term>
<term>Manufacturing technology</term>
<term>Marker</term>
<term>Marker particle</term>
<term>Marker particles</term>
<term>Material surface</term>
<term>Minimal residence time</term>
<term>Mixer</term>
<term>Normal direction</term>
<term>Numerical simulation</term>
<term>Numerical simulations</term>
<term>Other hand</term>
<term>Outlet section</term>
<term>Outlet sections</term>
<term>Percentile</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer engineering</term>
<term>Residence time</term>
<term>Residence time distribution</term>
<term>Same disc width</term>
<term>Screw element</term>
<term>Screw elements</term>
<term>Screw speed</term>
<term>Shear rate</term>
<term>Simulation</term>
<term>Smaller disc width</term>
<term>Statistical theory</term>
<term>Stretch rate</term>
<term>Strong reorientation</term>
<term>Surface area</term>
<term>Test zone</term>
<term>Textile materials</term>
<term>Twin screw extruders</term>
<term>Virtual particles</term>
<term>Zhejiang university</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This work aims at simulation by particle tracking the local residence time distributions (RTDs) of a co‐rotating twin‐screw extruder using computational fluid dynamics. Simulated results follow reasonably well the trend of experimental results obtained by an in‐line measuring instrument for different screw configurations and feed rates. To analyze the distributive mixing performance and overall efficiency of different types of kneading discs (KDs), mixing parameters such as area stretch ratio, instantaneous efficiency, and time‐average efficiency are calculated. Among KDs with stagger angles 45°, 60°, and 90°, the 90/10/64 with disc gaps is most efficient in terms of distributive mixing. The effects of the disc width and disc gap on the local RTD and distributive mixing are also discussed. This provides a numerical tool for assessing point‐by‐point information on the local RTD, flow, and mixing along the screw extruder. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>polym</json:string>
<json:string>marker particles</json:string>
<json:string>hegi</json:string>
<json:string>percentile</json:string>
<json:string>polymer engineering</json:string>
<json:string>screw speed</json:string>
<json:string>intermeshing</json:string>
<json:string>polymer</json:string>
<json:string>numerical simulations</json:string>
<json:string>area stretch ratio</json:string>
<json:string>disc width</json:string>
<json:string>avalosse</json:string>
<json:string>feed rate</json:string>
<json:string>extruder</json:string>
<json:string>simulation</json:string>
<json:string>distributive</json:string>
<json:string>different types</json:string>
<json:string>axial evolution</json:string>
<json:string>numerical simulation</json:string>
<json:string>axial distance</json:string>
<json:string>delay time</json:string>
<json:string>experimental results</json:string>
<json:string>normal direction</json:string>
<json:string>disc gaps</json:string>
<json:string>disc</json:string>
<json:string>aiche</json:string>
<json:string>outlet section</json:string>
<json:string>smaller disc width</json:string>
<json:string>zhejiang university</json:string>
<json:string>initial direction</json:string>
<json:string>different screw</json:string>
<json:string>critical value</json:string>
<json:string>generalized newtonian</json:string>
<json:string>axial</json:string>
<json:string>marker</json:string>
<json:string>mixer</json:string>
<json:string>screw elements</json:string>
<json:string>flow channel</json:string>
<json:string>residence time distribution</json:string>
<json:string>experimental ones</json:string>
<json:string>same disc width</json:string>
<json:string>different mixers</json:string>
<json:string>inlet section</json:string>
<json:string>outlet sections</json:string>
<json:string>screw element</json:string>
<json:string>contract grant sponsor</json:string>
<json:string>shear rate</json:string>
<json:string>carreau model</json:string>
<json:string>marker particle</json:string>
<json:string>virtual particles</json:string>
<json:string>minimal residence time</json:string>
<json:string>different regions</json:string>
<json:string>stretch rate</json:string>
<json:string>large amount</json:string>
<json:string>material surface</json:string>
<json:string>contract grant number</json:string>
<json:string>test zone</json:string>
<json:string>statistical theory</json:string>
<json:string>twin screw extruders</json:string>
<json:string>manufacturing technology</json:string>
<json:string>textile materials</json:string>
<json:string>initial stage</json:string>
<json:string>surface area</json:string>
<json:string>important role</json:string>
<json:string>other hand</json:string>
<json:string>experimental data</json:string>
<json:string>area stretch</json:string>
<json:string>experimental validation</json:string>
<json:string>high percentiles</json:string>
<json:string>different percentiles</json:string>
<json:string>critical values</json:string>
<json:string>strong reorientation</json:string>
<json:string>larger disc width</json:string>
<json:string>residence time</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Xian‐Ming Zhang</name>
<affiliations>
<json:string>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lian‐Fang Feng</name>
<affiliations>
<json:string>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China</json:string>
<json:string>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Wen‐Xing Chen</name>
<affiliations>
<json:string>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</json:string>
</affiliations>
</json:item>
<json:item>
<name>Guo‐Hua Hu</name>
<affiliations>
<json:string>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</json:string>
<json:string>Institut Universitaire de France, Maison des Universités, 75005 Paris, France</json:string>
<json:string>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>PEN21404</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>This work aims at simulation by particle tracking the local residence time distributions (RTDs) of a co‐rotating twin‐screw extruder using computational fluid dynamics. Simulated results follow reasonably well the trend of experimental results obtained by an in‐line measuring instrument for different screw configurations and feed rates. To analyze the distributive mixing performance and overall efficiency of different types of kneading discs (KDs), mixing parameters such as area stretch ratio, instantaneous efficiency, and time‐average efficiency are calculated. Among KDs with stagger angles 45°, 60°, and 90°, the 90/10/64 with disc gaps is most efficient in terms of distributive mixing. The effects of the disc width and disc gap on the local RTD and distributive mixing are also discussed. This provides a numerical tool for assessing point‐by‐point information on the local RTD, flow, and mixing along the screw extruder. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</abstract>
<qualityIndicators>
<score>6.565</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>603 x 801 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>994</abstractCharCount>
<pdfWordCount>4801</pdfWordCount>
<pdfCharCount>27739</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>147</abstractWordCount>
</qualityIndicators>
<title>Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Polymer Engineering & Science</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1548-2634</json:string>
</doi>
<issn>
<json:string>0032-3888</json:string>
</issn>
<eissn>
<json:string>1548-2634</json:string>
</eissn>
<publisherId>
<json:string>PEN</json:string>
</publisherId>
<volume>49</volume>
<issue>9</issue>
<pages>
<first>1772</first>
<last>1783</last>
<total>12</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>polymer science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>polymers</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>psychologie. psychophysiologie</json:string>
</inist>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1002/pen.21404</json:string>
</doi>
<id>CF792276482E693A042AD6FDF60A705AF5A1A105</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/CF792276482E693A042AD6FDF60A705AF5A1A105/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/CF792276482E693A042AD6FDF60A705AF5A1A105/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CF792276482E693A042AD6FDF60A705AF5A1A105/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2009 Society of Plastics Engineers</licence>
</availability>
<date type="published" when="2009-09"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Xian‐Ming</forename>
<surname>Zhang</surname>
</persName>
<affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China
<address>
<country key="CN"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<forename type="first">Lian‐Fang</forename>
<surname>Feng</surname>
</persName>
<email>fenglf@zju.edu.cn</email>
<affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
<address>
<country key="CN"></country>
</address>
</affiliation>
<affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China Guo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Wen‐Xing</forename>
<surname>Chen</surname>
</persName>
<affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China
<address>
<country key="CN"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">Guo‐Hua</forename>
<surname>Hu</surname>
</persName>
<email>hu@ensic.inpl‐nancy.fr</email>
<affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Institut Universitaire de France, Maison des Universités, 75005 Paris, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China Guo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</affiliation>
</author>
<idno type="istex">CF792276482E693A042AD6FDF60A705AF5A1A105</idno>
<idno type="ark">ark:/67375/WNG-NXW8DV6B-M</idno>
<idno type="DOI">10.1002/pen.21404</idno>
<idno type="unit">PEN21404</idno>
<idno type="toTypesetVersion">file:PEN.PEN21404.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Polymer Engineering & Science</title>
<title level="j" type="alt">POLYMER ENGINEERING AND SCIENCE</title>
<idno type="pISSN">0032-3888</idno>
<idno type="eISSN">1548-2634</idno>
<idno type="book-DOI">10.1002/(ISSN)1548-2634</idno>
<idno type="book-part-DOI">10.1002/pen.v49:9</idno>
<idno type="product">PEN</idno>
<imprint>
<biblScope unit="vol">49</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="1772">1772</biblScope>
<biblScope unit="page" to="1783">1783</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2009-09"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>This work aims at simulation by particle tracking the local residence time distributions (RTDs) of a co‐rotating twin‐screw extruder using computational fluid dynamics. Simulated results follow reasonably well the trend of experimental results obtained by an in‐line measuring instrument for different screw configurations and feed rates. To analyze the distributive mixing performance and overall efficiency of different types of kneading discs (KDs), mixing parameters such as area stretch ratio, instantaneous efficiency, and time‐average efficiency are calculated. Among KDs with stagger angles 45°, 60°, and 90°, the 90/10/64 with disc gaps is most efficient in terms of distributive mixing. The effects of the disc width and disc gap on the local RTD and distributive mixing are also discussed. This provides a numerical tool for assessing point‐by‐point information on the local RTD, flow, and mixing along the screw extruder. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</p>
</abstract>
<textClass>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/CF792276482E693A042AD6FDF60A705AF5A1A105/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1548-2634</doi>
<issn type="print">0032-3888</issn>
<issn type="electronic">1548-2634</issn>
<idGroup>
<id type="product" value="PEN"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="POLYMER ENGINEERING AND SCIENCE">Polymer Engineering & Science</title>
<title type="short">Polym Eng Sci</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="90">
<doi origin="wiley" registered="yes">10.1002/pen.v49:9</doi>
<numberingGroup>
<numbering type="journalVolume" number="49">49</numbering>
<numbering type="journalIssue">9</numbering>
</numberingGroup>
<coverDate startDate="2009-09">September 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="130" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/pen.21404</doi>
<idGroup>
<id type="unit" value="PEN21404"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright © 2009 Society of Plastics Engineers</copyright>
<eventGroup>
<event type="publishedOnlineEarlyUnpaginated" date="2009-05-19"></event>
<event type="firstOnline" date="2009-05-19"></event>
<event type="publishedOnlineFinalForm" date="2009-08-10"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1772</numbering>
<numbering type="pageLast">1783</numbering>
</numberingGroup>
<correspondenceTo>
<lineatedText>
<line>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China</line>
<line>Guo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</line>
</lineatedText>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:PEN.PEN21404.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="17"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="43"></count>
<count type="wordTotal" number="760"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Xian‐Ming</givenNames>
<familyName>Zhang</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2" corresponding="yes">
<personName>
<givenNames>Lian‐Fang</givenNames>
<familyName>Feng</familyName>
</personName>
<contactDetails>
<email>fenglf@zju.edu.cn</email>
</contactDetails>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Wen‐Xing</givenNames>
<familyName>Chen</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3 #af4" corresponding="yes">
<personName>
<givenNames>Guo‐Hua</givenNames>
<familyName>Hu</familyName>
</personName>
<contactDetails>
<email normalForm="hu@ensic.inpl-nancy.fr">hu@ensic.inpl‐nancy.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="CN" type="organization">
<unparsedAffiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="CN" type="organization">
<unparsedAffiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="FR" type="organization">
<unparsedAffiliation>Institut Universitaire de France, Maison des Universités, 75005 Paris, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<fundingInfo>
<fundingAgency>National Natural Science Foundation of China</fundingAgency>
<fundingNumber>50390097</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci‐Tech University), Ministry of Education</fundingAgency>
<fundingNumber>2008QN05</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>This work aims at simulation by particle tracking the local residence time distributions (RTDs) of a co‐rotating twin‐screw extruder using computational fluid dynamics. Simulated results follow reasonably well the trend of experimental results obtained by an in‐line measuring instrument for different screw configurations and feed rates. To analyze the distributive mixing performance and overall efficiency of different types of kneading discs (KDs), mixing parameters such as area stretch ratio, instantaneous efficiency, and time‐average efficiency are calculated. Among KDs with stagger angles 45°, 60°, and 90°, the 90/10/64 with disc gaps is most efficient in terms of distributive mixing. The effects of the disc width and disc gap on the local RTD and distributive mixing are also discussed. This provides a numerical tool for assessing point‐by‐point information on the local RTD, flow, and mixing along the screw extruder. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xian‐Ming</namePart>
<namePart type="family">Zhang</namePart>
<affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lian‐Fang</namePart>
<namePart type="family">Feng</namePart>
<affiliation>State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China</affiliation>
<affiliation>E-mail: fenglf@zju.edu.cn</affiliation>
<affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen‐Xing</namePart>
<namePart type="family">Chen</namePart>
<affiliation>Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci‐Tech University, Hangzhou 310018, China</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guo‐Hua</namePart>
<namePart type="family">Hu</namePart>
<affiliation>Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</affiliation>
<affiliation>Institut Universitaire de France, Maison des Universités, 75005 Paris, France</affiliation>
<affiliation>E-mail: hu@ensic.inpl‐nancy.fr</affiliation>
<affiliation>Lian‐Fang Feng, State Key Laboratory of Polymer Reaction Engineering, College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, ChinaGuo‐Hua Hu, Laboratory of Chemical Engineering Sciences, CNRS‐ENSIC‐INPL, 54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-09</dateIssued>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">17</extent>
<extent unit="tables">3</extent>
<extent unit="references">43</extent>
<extent unit="words">760</extent>
</physicalDescription>
<abstract lang="en">This work aims at simulation by particle tracking the local residence time distributions (RTDs) of a co‐rotating twin‐screw extruder using computational fluid dynamics. Simulated results follow reasonably well the trend of experimental results obtained by an in‐line measuring instrument for different screw configurations and feed rates. To analyze the distributive mixing performance and overall efficiency of different types of kneading discs (KDs), mixing parameters such as area stretch ratio, instantaneous efficiency, and time‐average efficiency are calculated. Among KDs with stagger angles 45°, 60°, and 90°, the 90/10/64 with disc gaps is most efficient in terms of distributive mixing. The effects of the disc width and disc gap on the local RTD and distributive mixing are also discussed. This provides a numerical tool for assessing point‐by‐point information on the local RTD, flow, and mixing along the screw extruder. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers</abstract>
<note type="funding">National Natural Science Foundation of China - No. 50390097; </note>
<note type="funding">Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci‐Tech University), Ministry of Education - No. 2008QN05; </note>
<relatedItem type="host">
<titleInfo>
<title>Polymer Engineering & Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Polym Eng Sci</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0032-3888</identifier>
<identifier type="eISSN">1548-2634</identifier>
<identifier type="DOI">10.1002/(ISSN)1548-2634</identifier>
<identifier type="PublisherID">PEN</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>49</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>1772</start>
<end>1783</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">CF792276482E693A042AD6FDF60A705AF5A1A105</identifier>
<identifier type="ark">ark:/67375/WNG-NXW8DV6B-M</identifier>
<identifier type="DOI">10.1002/pen.21404</identifier>
<identifier type="ArticleID">PEN21404</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2009 Society of Plastics Engineers</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/CF792276482E693A042AD6FDF60A705AF5A1A105/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CF792276482E693A042AD6FDF60A705AF5A1A105
   |texte=   Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024