Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc

Identifieur interne : 000B36 ( Istex/Corpus ); précédent : 000B35; suivant : 000B37

Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc

Auteurs : Cécile Vallières ; Joshua Gray ; Souhila Poncin ; Michael Matlosz

Source :

RBID : ISTEX:178BEE714B57E8DB810B5A776F34CC72E939825F

English descriptors

Abstract

A new potentiometric oxygen sensor is proposed, based on the mixed potential of zinc in a chloride electrolyte. Variations in the sensor potential with oxygen concentration are the direct result of changes in the corrosion rate of the zinc electrode due to diffusion‐limited reduction of oxygen at its surface. For static concentration measurements, the performance of the new (potentiometric) sensor is essentially equivalent to that of a traditional (amperometric) Clark sensor. For transient measurements, however, the response of the potentiometric sensor can be considerably faster than the analogous amperometric sensor, due to the sensitivity of the potentiometric method to logarithmic (rather than linear) variations in oxygen concentration.

Url:
DOI: 10.1002/(SICI)1521-4109(199803)10:3<191::AID-ELAN191>3.0.CO;2-W

Links to Exploration step

ISTEX:178BEE714B57E8DB810B5A776F34CC72E939825F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
<author>
<name sortKey="Vallieres, Cecile" sort="Vallieres, Cecile" uniqKey="Vallieres C" first="Cécile" last="Vallières">Cécile Vallières</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gray, Joshua" sort="Gray, Joshua" uniqKey="Gray J" first="Joshua" last="Gray">Joshua Gray</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poncin, Souhila" sort="Poncin, Souhila" uniqKey="Poncin S" first="Souhila" last="Poncin">Souhila Poncin</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matlosz, Michael" sort="Matlosz, Michael" uniqKey="Matlosz M" first="Michael" last="Matlosz">Michael Matlosz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:178BEE714B57E8DB810B5A776F34CC72E939825F</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1002/(SICI)1521-4109(199803)10:3<191::AID-ELAN191>3.0.CO;2-W</idno>
<idno type="url">https://api.istex.fr/document/178BEE714B57E8DB810B5A776F34CC72E939825F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B36</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
<author>
<name sortKey="Vallieres, Cecile" sort="Vallieres, Cecile" uniqKey="Vallieres C" first="Cécile" last="Vallières">Cécile Vallières</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gray, Joshua" sort="Gray, Joshua" uniqKey="Gray J" first="Joshua" last="Gray">Joshua Gray</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poncin, Souhila" sort="Poncin, Souhila" uniqKey="Poncin S" first="Souhila" last="Poncin">Souhila Poncin</name>
<affiliation>
<mods:affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Matlosz, Michael" sort="Matlosz, Michael" uniqKey="Matlosz M" first="Michael" last="Matlosz">Michael Matlosz</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Electroanalysis</title>
<title level="j" type="alt">ELECTROANALYSIS</title>
<idno type="ISSN">1040-0397</idno>
<idno type="eISSN">1521-4109</idno>
<imprint>
<biblScope unit="vol">10</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="191">191</biblScope>
<biblScope unit="page" to="197">197</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>VCH Verlagsgesellschaft mbH</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="1998-03">1998-03</date>
</imprint>
<idno type="ISSN">1040-0397</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1040-0397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorber system</term>
<term>Ambient temperature</term>
<term>Amperometric</term>
<term>Amperometric clark sensors</term>
<term>Amperometric measurements</term>
<term>Amperometric sensor</term>
<term>Amperometric sensors</term>
<term>Aqueous solutions</term>
<term>Biological applications</term>
<term>Cathode surface</term>
<term>Cathodic</term>
<term>Chloride electrolyte</term>
<term>Clark sensor</term>
<term>Commercial clark sensor</term>
<term>Concentration step</term>
<term>Counter electrode</term>
<term>Current density</term>
<term>Detection limit</term>
<term>Diffusion barriers</term>
<term>Diffusion boundary layer</term>
<term>Direct contact</term>
<term>Disk rotation speed</term>
<term>Dynamic measurements</term>
<term>Electroanalysis</term>
<term>Electrode</term>
<term>Electrolyte</term>
<term>Electrolyte solution</term>
<term>Electrolyte volume</term>
<term>Experimental results</term>
<term>High rotation speeds</term>
<term>Initial value</term>
<term>Interfacial kinetics</term>
<term>Intrinsic time</term>
<term>Kinematic viscosity</term>
<term>Kinetics</term>
<term>Logarithmic relationship</term>
<term>Measurement methods</term>
<term>Membrane bridge</term>
<term>Membrane permeability</term>
<term>Noble metals</term>
<term>Open circles</term>
<term>Optical sensors</term>
<term>Oxygen concentration</term>
<term>Oxygen concentrations</term>
<term>Oxygen content</term>
<term>Oxygen diffusion</term>
<term>Oxygen reduction</term>
<term>Oxygen sensor</term>
<term>Oxygen sensors</term>
<term>Parc model</term>
<term>Potentiometric</term>
<term>Potentiometric detection</term>
<term>Potentiometric measurements</term>
<term>Potentiometric oxygen sensor</term>
<term>Potentiometric response</term>
<term>Potentiometric sensor</term>
<term>Potentiometric sensor signal</term>
<term>Potentiometric sensors</term>
<term>Reference electrode</term>
<term>Room temperature</term>
<term>Semilogarithmic scale</term>
<term>Sensor</term>
<term>Sensor electrodes</term>
<term>Sensor performance</term>
<term>Sensor response</term>
<term>Sensor signal</term>
<term>Solid circles</term>
<term>Solid curve</term>
<term>Static concentration measurements</term>
<term>Step change</term>
<term>Such studies</term>
<term>Theoretical amperometric response</term>
<term>Theoretical performance</term>
<term>Theoretical potentiometric response</term>
<term>Transient response</term>
<term>Zinc electrode</term>
<term>Zinc oxidation</term>
<term>Zinc surface</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absorber system</term>
<term>Ambient temperature</term>
<term>Amperometric</term>
<term>Amperometric clark sensors</term>
<term>Amperometric measurements</term>
<term>Amperometric sensor</term>
<term>Amperometric sensors</term>
<term>Aqueous solutions</term>
<term>Biological applications</term>
<term>Cathode surface</term>
<term>Cathodic</term>
<term>Chloride electrolyte</term>
<term>Clark sensor</term>
<term>Commercial clark sensor</term>
<term>Concentration step</term>
<term>Counter electrode</term>
<term>Current density</term>
<term>Detection limit</term>
<term>Diffusion barriers</term>
<term>Diffusion boundary layer</term>
<term>Direct contact</term>
<term>Disk rotation speed</term>
<term>Dynamic measurements</term>
<term>Electroanalysis</term>
<term>Electrode</term>
<term>Electrolyte</term>
<term>Electrolyte solution</term>
<term>Electrolyte volume</term>
<term>Experimental results</term>
<term>High rotation speeds</term>
<term>Initial value</term>
<term>Interfacial kinetics</term>
<term>Intrinsic time</term>
<term>Kinematic viscosity</term>
<term>Kinetics</term>
<term>Logarithmic relationship</term>
<term>Measurement methods</term>
<term>Membrane bridge</term>
<term>Membrane permeability</term>
<term>Noble metals</term>
<term>Open circles</term>
<term>Optical sensors</term>
<term>Oxygen concentration</term>
<term>Oxygen concentrations</term>
<term>Oxygen content</term>
<term>Oxygen diffusion</term>
<term>Oxygen reduction</term>
<term>Oxygen sensor</term>
<term>Oxygen sensors</term>
<term>Parc model</term>
<term>Potentiometric</term>
<term>Potentiometric detection</term>
<term>Potentiometric measurements</term>
<term>Potentiometric oxygen sensor</term>
<term>Potentiometric response</term>
<term>Potentiometric sensor</term>
<term>Potentiometric sensor signal</term>
<term>Potentiometric sensors</term>
<term>Reference electrode</term>
<term>Room temperature</term>
<term>Semilogarithmic scale</term>
<term>Sensor</term>
<term>Sensor electrodes</term>
<term>Sensor performance</term>
<term>Sensor response</term>
<term>Sensor signal</term>
<term>Solid circles</term>
<term>Solid curve</term>
<term>Static concentration measurements</term>
<term>Step change</term>
<term>Such studies</term>
<term>Theoretical amperometric response</term>
<term>Theoretical performance</term>
<term>Theoretical potentiometric response</term>
<term>Transient response</term>
<term>Zinc electrode</term>
<term>Zinc oxidation</term>
<term>Zinc surface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new potentiometric oxygen sensor is proposed, based on the mixed potential of zinc in a chloride electrolyte. Variations in the sensor potential with oxygen concentration are the direct result of changes in the corrosion rate of the zinc electrode due to diffusion‐limited reduction of oxygen at its surface. For static concentration measurements, the performance of the new (potentiometric) sensor is essentially equivalent to that of a traditional (amperometric) Clark sensor. For transient measurements, however, the response of the potentiometric sensor can be considerably faster than the analogous amperometric sensor, due to the sensitivity of the potentiometric method to logarithmic (rather than linear) variations in oxygen concentration.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>potentiometric</json:string>
<json:string>amperometric</json:string>
<json:string>electrolyte</json:string>
<json:string>potentiometric sensor</json:string>
<json:string>sensor</json:string>
<json:string>oxygen concentration</json:string>
<json:string>oxygen reduction</json:string>
<json:string>amperometric sensor</json:string>
<json:string>disk rotation speed</json:string>
<json:string>kinetics</json:string>
<json:string>electroanalysis</json:string>
<json:string>zinc oxidation</json:string>
<json:string>cathodic</json:string>
<json:string>zinc electrode</json:string>
<json:string>amperometric sensors</json:string>
<json:string>ambient temperature</json:string>
<json:string>current density</json:string>
<json:string>step change</json:string>
<json:string>static concentration measurements</json:string>
<json:string>commercial clark sensor</json:string>
<json:string>electrolyte volume</json:string>
<json:string>oxygen concentrations</json:string>
<json:string>electrode</json:string>
<json:string>potentiometric measurements</json:string>
<json:string>dynamic measurements</json:string>
<json:string>potentiometric detection</json:string>
<json:string>optical sensors</json:string>
<json:string>amperometric measurements</json:string>
<json:string>electrolyte solution</json:string>
<json:string>aqueous solutions</json:string>
<json:string>interfacial kinetics</json:string>
<json:string>oxygen diffusion</json:string>
<json:string>measurement methods</json:string>
<json:string>reference electrode</json:string>
<json:string>transient response</json:string>
<json:string>sensor performance</json:string>
<json:string>oxygen sensor</json:string>
<json:string>solid curve</json:string>
<json:string>zinc surface</json:string>
<json:string>membrane permeability</json:string>
<json:string>counter electrode</json:string>
<json:string>biological applications</json:string>
<json:string>cathode surface</json:string>
<json:string>amperometric clark sensors</json:string>
<json:string>clark sensor</json:string>
<json:string>noble metals</json:string>
<json:string>potentiometric sensors</json:string>
<json:string>chloride electrolyte</json:string>
<json:string>membrane bridge</json:string>
<json:string>direct contact</json:string>
<json:string>potentiometric response</json:string>
<json:string>sensor electrodes</json:string>
<json:string>potentiometric oxygen sensor</json:string>
<json:string>diffusion barriers</json:string>
<json:string>room temperature</json:string>
<json:string>kinematic viscosity</json:string>
<json:string>experimental results</json:string>
<json:string>logarithmic relationship</json:string>
<json:string>oxygen content</json:string>
<json:string>sensor signal</json:string>
<json:string>initial value</json:string>
<json:string>sensor response</json:string>
<json:string>absorber system</json:string>
<json:string>concentration step</json:string>
<json:string>solid circles</json:string>
<json:string>open circles</json:string>
<json:string>parc model</json:string>
<json:string>theoretical potentiometric response</json:string>
<json:string>theoretical amperometric response</json:string>
<json:string>theoretical performance</json:string>
<json:string>detection limit</json:string>
<json:string>potentiometric sensor signal</json:string>
<json:string>semilogarithmic scale</json:string>
<json:string>intrinsic time</json:string>
<json:string>diffusion boundary layer</json:string>
<json:string>high rotation speeds</json:string>
<json:string>oxygen sensors</json:string>
<json:string>such studies</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Cécile Vallières</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joshua Gray</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Souhila Poncin</name>
<affiliations>
<json:string>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael Matlosz</name>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Corrosion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Mixed potential</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Oxygen</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Potentiometric sensor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Zinc</value>
</json:item>
</subject>
<articleId>
<json:string>ELAN191</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>A new potentiometric oxygen sensor is proposed, based on the mixed potential of zinc in a chloride electrolyte. Variations in the sensor potential with oxygen concentration are the direct result of changes in the corrosion rate of the zinc electrode due to diffusion‐limited reduction of oxygen at its surface. For static concentration measurements, the performance of the new (potentiometric) sensor is essentially equivalent to that of a traditional (amperometric) Clark sensor. For transient measurements, however, the response of the potentiometric sensor can be considerably faster than the analogous amperometric sensor, due to the sensitivity of the potentiometric method to logarithmic (rather than linear) variations in oxygen concentration.</abstract>
<qualityIndicators>
<score>5.879</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>750</abstractCharCount>
<pdfWordCount>4595</pdfWordCount>
<pdfCharCount>28454</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>107</abstractWordCount>
</qualityIndicators>
<title>Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Electroanalysis</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1521-4109</json:string>
</doi>
<issn>
<json:string>1040-0397</json:string>
</issn>
<eissn>
<json:string>1521-4109</json:string>
</eissn>
<publisherId>
<json:string>ELAN</json:string>
</publisherId>
<volume>10</volume>
<issue>3</issue>
<pages>
<first>191</first>
<last>197</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>electrochemistry</json:string>
<json:string>chemistry, analytical</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>analytical chemistry</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>chimie</json:string>
<json:string>chimie analytique</json:string>
</inist>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1002/(SICI)1521-4109(199803)10:3>191::AID-ELAN191>3.0.CO;2-W</json:string>
</doi>
<id>178BEE714B57E8DB810B5A776F34CC72E939825F</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/178BEE714B57E8DB810B5A776F34CC72E939825F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/178BEE714B57E8DB810B5A776F34CC72E939825F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/178BEE714B57E8DB810B5A776F34CC72E939825F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>VCH Verlagsgesellschaft mbH</publisher>
<pubPlace>Weinheim</pubPlace>
<availability>
<licence>© 1998 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</licence>
</availability>
<date type="published" when="1998-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Cécile</forename>
<surname>Vallières</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Joshua</forename>
<surname>Gray</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Souhila</forename>
<surname>Poncin</surname>
</persName>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Michael</forename>
<surname>Matlosz</surname>
</persName>
</author>
<idno type="istex">178BEE714B57E8DB810B5A776F34CC72E939825F</idno>
<idno type="ark">ark:/67375/WNG-06S33XHL-0</idno>
<idno type="DOI">10.1002/(SICI)1521-4109(199803)10:3<191::AID-ELAN191>3.0.CO;2-W</idno>
<idno type="unit">ELAN191</idno>
<idno type="toTypesetVersion">file:ELAN.ELAN191.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Electroanalysis</title>
<title level="j" type="alt">ELECTROANALYSIS</title>
<idno type="pISSN">1040-0397</idno>
<idno type="eISSN">1521-4109</idno>
<idno type="book-DOI">10.1002/(ISSN)1521-4109</idno>
<idno type="book-part-DOI">10.1002/(SICI)1521-4109(199803)10:3<>1.0.CO;2-L</idno>
<idno type="product">ELAN</idno>
<imprint>
<biblScope unit="vol">10</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="191">191</biblScope>
<biblScope unit="page" to="197">197</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>VCH Verlagsgesellschaft mbH</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="1998-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>A new potentiometric oxygen sensor is proposed, based on the mixed potential of zinc in a chloride electrolyte. Variations in the sensor potential with oxygen concentration are the direct result of changes in the corrosion rate of the zinc electrode due to diffusion‐limited reduction of oxygen at its surface. For static concentration measurements, the performance of the new (potentiometric) sensor is essentially equivalent to that of a traditional (amperometric) Clark sensor. For transient measurements, however, the response of the potentiometric sensor can be considerably faster than the analogous amperometric sensor, due to the sensitivity of the potentiometric method to logarithmic (rather than linear) variations in oxygen concentration.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">Corrosion</term>
<term xml:id="kwd2">Mixed potential</term>
<term xml:id="kwd3">Oxygen</term>
<term xml:id="kwd4">Potentiometric sensor</term>
<term xml:id="kwd5">Zinc</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/178BEE714B57E8DB810B5A776F34CC72E939825F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>VCH Verlagsgesellschaft mbH</publisherName>
<publisherLoc>Weinheim</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-4109</doi>
<issn type="print">1040-0397</issn>
<issn type="electronic">1521-4109</issn>
<idGroup>
<id type="product" value="ELAN"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="ELECTROANALYSIS">Electroanalysis</title>
<title type="subtitle">An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis</title>
<title type="short">Electroanalysis</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/(SICI)1521-4109(199803)10:3<>1.0.CO;2-L</doi>
<numberingGroup>
<numbering type="journalVolume" number="10">10</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="1998-03">March 1998</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="8" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/(SICI)1521-4109(199803)10:3<191::AID-ELAN191>3.0.CO;2-W</doi>
<idGroup>
<id type="unit" value="ELAN191"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
</titleGroup>
<copyright ownership="publisher">© 1998 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1997-08-08"></event>
<event type="manuscriptAccepted" date="1997-11-26"></event>
<event type="firstOnline" date="1998-12-07"></event>
<event type="publishedOnlineFinalForm" date="1998-12-07"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-24"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">191</numbering>
<numbering type="pageLast">197</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:ELAN.ELAN191.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Cécile</givenNames>
<familyName>Vallières</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Joshua</givenNames>
<familyName>Gray</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Souhila</givenNames>
<familyName>Poncin</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author">
<personName>
<givenNames>Michael</givenNames>
<familyName>Matlosz</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">Corrosion</keyword>
<keyword xml:id="kwd2">Mixed potential</keyword>
<keyword xml:id="kwd3">Oxygen</keyword>
<keyword xml:id="kwd4">Potentiometric sensor</keyword>
<keyword xml:id="kwd5">Zinc</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>A new potentiometric oxygen sensor is proposed, based on the mixed potential of zinc in a chloride electrolyte. Variations in the sensor potential with oxygen concentration are the direct result of changes in the corrosion rate of the zinc electrode due to diffusion‐limited reduction of oxygen at its surface. For static concentration measurements, the performance of the new (potentiometric) sensor is essentially equivalent to that of a traditional (amperometric) Clark sensor. For transient measurements, however, the response of the potentiometric sensor can be considerably faster than the analogous amperometric sensor, due to the sensitivity of the potentiometric method to logarithmic (rather than linear) variations in oxygen concentration.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cécile</namePart>
<namePart type="family">Vallières</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joshua</namePart>
<namePart type="family">Gray</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Souhila</namePart>
<namePart type="family">Poncin</namePart>
<affiliation>Laboratoire des Sciences du Génie Chimique, CNRS‐INPL, Groupe ENSIC, 1, rue Grandville B.P. 451, F‐54001 Nancy, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Matlosz</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>VCH Verlagsgesellschaft mbH</publisher>
<place>
<placeTerm type="text">Weinheim</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1998-03</dateIssued>
<dateCaptured encoding="w3cdtf">1997-08-08</dateCaptured>
<dateValid encoding="w3cdtf">1997-11-26</dateValid>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">8</extent>
<extent unit="tables">0</extent>
<extent unit="references">14</extent>
</physicalDescription>
<abstract lang="en">A new potentiometric oxygen sensor is proposed, based on the mixed potential of zinc in a chloride electrolyte. Variations in the sensor potential with oxygen concentration are the direct result of changes in the corrosion rate of the zinc electrode due to diffusion‐limited reduction of oxygen at its surface. For static concentration measurements, the performance of the new (potentiometric) sensor is essentially equivalent to that of a traditional (amperometric) Clark sensor. For transient measurements, however, the response of the potentiometric sensor can be considerably faster than the analogous amperometric sensor, due to the sensitivity of the potentiometric method to logarithmic (rather than linear) variations in oxygen concentration.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Corrosion</topic>
<topic>Mixed potential</topic>
<topic>Oxygen</topic>
<topic>Potentiometric sensor</topic>
<topic>Zinc</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Electroanalysis</title>
<subTitle>An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>Electroanalysis</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">1040-0397</identifier>
<identifier type="eISSN">1521-4109</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-4109</identifier>
<identifier type="PublisherID">ELAN</identifier>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>191</start>
<end>197</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">178BEE714B57E8DB810B5A776F34CC72E939825F</identifier>
<identifier type="ark">ark:/67375/WNG-06S33XHL-0</identifier>
<identifier type="DOI">10.1002/(SICI)1521-4109(199803)10:3<191::AID-ELAN191>3.0.CO;2-W</identifier>
<identifier type="ArticleID">ELAN191</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 1998 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>VCH Verlagsgesellschaft mbH</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/178BEE714B57E8DB810B5A776F34CC72E939825F/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000B36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:178BEE714B57E8DB810B5A776F34CC72E939825F
   |texte=   Potentiometric Detection of Oxygen Based on the Mixed Potential of Zinc
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024