Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair

Identifieur interne : 000650 ( Istex/Corpus ); précédent : 000649; suivant : 000651

New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair

Auteurs : Cécile Huin-Amargier ; Philippe Marchal ; Elisabeth Payan ; Patrick Netter ; Edith Dellacherie

Source :

RBID : ISTEX:AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1

English descriptors

Abstract

When dissolved in aqueous solutions, sodium hyaluronate substituted with low amounts of alkyl chains [amphiphilic hyaluronate (HA)] can give rise to hydrogels thanks to intermolecular reversible hydrophobic interactions, leading to a three‐dimensional (3D) network. Such hydrogels possess shear‐thinning properties and can thus be injected in cartilage defect to promote chondrocyte proliferation and cartilage repair. However, these hydrogels are only physically crosslinked and can progressively loose their 3D structure when they are in contact with aqueous fluids. To overcome this drawback, HA derivatives substituted with dodecyl chains were chemically crosslinked by a difunctional reagent, tetraethylene glycol ditosylate (TEG‐diOTs). To preserve the shear‐thinning properties of amphiphilic HA, small amounts of TEG‐diOTs were used so as to obtain a low chemical crosslinking ratio. After optimization of the synthesis parameters, aqueous solutions of the HA derivatives, crosslinked both physically and chemically, were obtained, with rheological properties improved compared to the amphiphilic polymers. As the hydrogels are aimed to cartilage repair, they were sterilized by wet heating; the effect of this treatment on the polymer characteristics was analyzed by different techniques. A similar study was carried out on HA derivatives stored under conditions mimicking physiological ones. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006

Url:
DOI: 10.1002/jbm.a.30536

Links to Exploration step

ISTEX:AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
<author>
<name sortKey="Huin Margier, Cecile" sort="Huin Margier, Cecile" uniqKey="Huin Margier C" first="Cécile" last="Huin-Amargier">Cécile Huin-Amargier</name>
<affiliation>
<mods:affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marchal, Philippe" sort="Marchal, Philippe" uniqKey="Marchal P" first="Philippe" last="Marchal">Philippe Marchal</name>
<affiliation>
<mods:affiliation>Centre du Génie Chimique des Milieux Rhéologiquement Complexes, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Payan, Elisabeth" sort="Payan, Elisabeth" uniqKey="Payan E" first="Elisabeth" last="Payan">Elisabeth Payan</name>
<affiliation>
<mods:affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Netter, Patrick" sort="Netter, Patrick" uniqKey="Netter P" first="Patrick" last="Netter">Patrick Netter</name>
<affiliation>
<mods:affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dellacherie, Edith" sort="Dellacherie, Edith" uniqKey="Dellacherie E" first="Edith" last="Dellacherie">Edith Dellacherie</name>
<affiliation>
<mods:affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: edith.dellacherie@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/jbm.a.30536</idno>
<idno type="url">https://api.istex.fr/document/AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000650</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000650</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
<author>
<name sortKey="Huin Margier, Cecile" sort="Huin Margier, Cecile" uniqKey="Huin Margier C" first="Cécile" last="Huin-Amargier">Cécile Huin-Amargier</name>
<affiliation>
<mods:affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marchal, Philippe" sort="Marchal, Philippe" uniqKey="Marchal P" first="Philippe" last="Marchal">Philippe Marchal</name>
<affiliation>
<mods:affiliation>Centre du Génie Chimique des Milieux Rhéologiquement Complexes, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Payan, Elisabeth" sort="Payan, Elisabeth" uniqKey="Payan E" first="Elisabeth" last="Payan">Elisabeth Payan</name>
<affiliation>
<mods:affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Netter, Patrick" sort="Netter, Patrick" uniqKey="Netter P" first="Patrick" last="Netter">Patrick Netter</name>
<affiliation>
<mods:affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dellacherie, Edith" sort="Dellacherie, Edith" uniqKey="Dellacherie E" first="Edith" last="Dellacherie">Edith Dellacherie</name>
<affiliation>
<mods:affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: edith.dellacherie@ensic.inpl‐nancy.fr</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">76A</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="416">416</biblScope>
<biblScope unit="page" to="424">424</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-02">2006-02</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkyl</term>
<term>Alkyl chains</term>
<term>Alkyl groups</term>
<term>Amphiphilic</term>
<term>Amphiphilic derivatives</term>
<term>Amphiphilic polymers</term>
<term>Angular frequency</term>
<term>Aqueous solution</term>
<term>Aqueous solutions</term>
<term>Articular</term>
<term>Articular cartilage defects</term>
<term>Articular cartilage repair</term>
<term>Average molar masses</term>
<term>Basic science</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Cartilage</term>
<term>Cartilage defect</term>
<term>Cartilage repair</term>
<term>Cartilage repair figure</term>
<term>Chemical crosslinking</term>
<term>Chemical crosslinking ratio</term>
<term>Chemical degradation</term>
<term>Chemical stability</term>
<term>Chromatography measurements</term>
<term>Crosslinked</term>
<term>Crosslinked amphiphilic</term>
<term>Crosslinked polymers</term>
<term>Crosslinking</term>
<term>Della valle</term>
<term>Derivative</term>
<term>Different steps</term>
<term>Difunctional reagent</term>
<term>Ester bonds</term>
<term>Groupe ensic</term>
<term>Heating sterilization</term>
<term>Hydrogel</term>
<term>Hydrogel formation</term>
<term>Hydrogels thanks</term>
<term>Hydrophobic</term>
<term>Hydrophobic interactions</term>
<term>Incubation time</term>
<term>Mechanical spectra</term>
<term>Molar</term>
<term>Molar mass</term>
<term>Monophasic systems</term>
<term>Monosaccharidic units</term>
<term>Nacl</term>
<term>Nacl solution</term>
<term>Nancy cedex</term>
<term>Osteoarthr cartilage</term>
<term>Other hand</term>
<term>Polymer</term>
<term>Polymer solutions</term>
<term>Polysaccharide</term>
<term>Rheological</term>
<term>Rheological behaviour</term>
<term>Rheological parameters</term>
<term>Rheological properties</term>
<term>Room temperature</term>
<term>Same conditions</term>
<term>Shear stress</term>
<term>Small amounts</term>
<term>Sodium hyaluronate</term>
<term>Sterilization</term>
<term>Substitution ratios</term>
<term>Tetraethylene glycol ditosylate</term>
<term>Tissue engineering</term>
<term>Tosyl chloride</term>
<term>Viscosity decrease</term>
<term>Viscosity increase</term>
<term>Wiley periodicals</term>
<term>Wyatt technology corporation</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alkyl</term>
<term>Alkyl chains</term>
<term>Alkyl groups</term>
<term>Amphiphilic</term>
<term>Amphiphilic derivatives</term>
<term>Amphiphilic polymers</term>
<term>Angular frequency</term>
<term>Aqueous solution</term>
<term>Aqueous solutions</term>
<term>Articular</term>
<term>Articular cartilage defects</term>
<term>Articular cartilage repair</term>
<term>Average molar masses</term>
<term>Basic science</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Cartilage</term>
<term>Cartilage defect</term>
<term>Cartilage repair</term>
<term>Cartilage repair figure</term>
<term>Chemical crosslinking</term>
<term>Chemical crosslinking ratio</term>
<term>Chemical degradation</term>
<term>Chemical stability</term>
<term>Chromatography measurements</term>
<term>Crosslinked</term>
<term>Crosslinked amphiphilic</term>
<term>Crosslinked polymers</term>
<term>Crosslinking</term>
<term>Della valle</term>
<term>Derivative</term>
<term>Different steps</term>
<term>Difunctional reagent</term>
<term>Ester bonds</term>
<term>Groupe ensic</term>
<term>Heating sterilization</term>
<term>Hydrogel</term>
<term>Hydrogel formation</term>
<term>Hydrogels thanks</term>
<term>Hydrophobic</term>
<term>Hydrophobic interactions</term>
<term>Incubation time</term>
<term>Mechanical spectra</term>
<term>Molar</term>
<term>Molar mass</term>
<term>Monophasic systems</term>
<term>Monosaccharidic units</term>
<term>Nacl</term>
<term>Nacl solution</term>
<term>Nancy cedex</term>
<term>Osteoarthr cartilage</term>
<term>Other hand</term>
<term>Polymer</term>
<term>Polymer solutions</term>
<term>Polysaccharide</term>
<term>Rheological</term>
<term>Rheological behaviour</term>
<term>Rheological parameters</term>
<term>Rheological properties</term>
<term>Room temperature</term>
<term>Same conditions</term>
<term>Shear stress</term>
<term>Small amounts</term>
<term>Sodium hyaluronate</term>
<term>Sterilization</term>
<term>Substitution ratios</term>
<term>Tetraethylene glycol ditosylate</term>
<term>Tissue engineering</term>
<term>Tosyl chloride</term>
<term>Viscosity decrease</term>
<term>Viscosity increase</term>
<term>Wiley periodicals</term>
<term>Wyatt technology corporation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">When dissolved in aqueous solutions, sodium hyaluronate substituted with low amounts of alkyl chains [amphiphilic hyaluronate (HA)] can give rise to hydrogels thanks to intermolecular reversible hydrophobic interactions, leading to a three‐dimensional (3D) network. Such hydrogels possess shear‐thinning properties and can thus be injected in cartilage defect to promote chondrocyte proliferation and cartilage repair. However, these hydrogels are only physically crosslinked and can progressively loose their 3D structure when they are in contact with aqueous fluids. To overcome this drawback, HA derivatives substituted with dodecyl chains were chemically crosslinked by a difunctional reagent, tetraethylene glycol ditosylate (TEG‐diOTs). To preserve the shear‐thinning properties of amphiphilic HA, small amounts of TEG‐diOTs were used so as to obtain a low chemical crosslinking ratio. After optimization of the synthesis parameters, aqueous solutions of the HA derivatives, crosslinked both physically and chemically, were obtained, with rheological properties improved compared to the amphiphilic polymers. As the hydrogels are aimed to cartilage repair, they were sterilized by wet heating; the effect of this treatment on the polymer characteristics was analyzed by different techniques. A similar study was carried out on HA derivatives stored under conditions mimicking physiological ones. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>hydrogel</json:string>
<json:string>nacl</json:string>
<json:string>rheological</json:string>
<json:string>derivative</json:string>
<json:string>crosslinked</json:string>
<json:string>polymer</json:string>
<json:string>amphiphilic</json:string>
<json:string>rheological properties</json:string>
<json:string>crosslinking</json:string>
<json:string>cartilage repair</json:string>
<json:string>articular</json:string>
<json:string>biomaterials</json:string>
<json:string>cartilage</json:string>
<json:string>shear stress</json:string>
<json:string>alkyl</json:string>
<json:string>chemical crosslinking</json:string>
<json:string>polysaccharide</json:string>
<json:string>biomed</json:string>
<json:string>molar</json:string>
<json:string>aqueous solutions</json:string>
<json:string>biomed mater</json:string>
<json:string>chemical stability</json:string>
<json:string>tissue engineering</json:string>
<json:string>average molar masses</json:string>
<json:string>alkyl chains</json:string>
<json:string>articular cartilage repair</json:string>
<json:string>substitution ratios</json:string>
<json:string>amphiphilic derivatives</json:string>
<json:string>ester bonds</json:string>
<json:string>molar mass</json:string>
<json:string>chromatography measurements</json:string>
<json:string>hydrophobic interactions</json:string>
<json:string>room temperature</json:string>
<json:string>viscosity decrease</json:string>
<json:string>mechanical spectra</json:string>
<json:string>nancy cedex</json:string>
<json:string>difunctional reagent</json:string>
<json:string>amphiphilic polymers</json:string>
<json:string>wiley periodicals</json:string>
<json:string>tosyl chloride</json:string>
<json:string>polymer solutions</json:string>
<json:string>wyatt technology corporation</json:string>
<json:string>basic science</json:string>
<json:string>sodium hyaluronate</json:string>
<json:string>hydrogels thanks</json:string>
<json:string>tetraethylene glycol ditosylate</json:string>
<json:string>small amounts</json:string>
<json:string>monosaccharidic units</json:string>
<json:string>aqueous solution</json:string>
<json:string>osteoarthr cartilage</json:string>
<json:string>other hand</json:string>
<json:string>chemical crosslinking ratio</json:string>
<json:string>monophasic systems</json:string>
<json:string>rheological behaviour</json:string>
<json:string>different steps</json:string>
<json:string>chemical degradation</json:string>
<json:string>hydrogel formation</json:string>
<json:string>articular cartilage defects</json:string>
<json:string>cartilage repair figure</json:string>
<json:string>crosslinked amphiphilic</json:string>
<json:string>same conditions</json:string>
<json:string>viscosity increase</json:string>
<json:string>alkyl groups</json:string>
<json:string>crosslinked polymers</json:string>
<json:string>della valle</json:string>
<json:string>angular frequency</json:string>
<json:string>rheological parameters</json:string>
<json:string>heating sterilization</json:string>
<json:string>incubation time</json:string>
<json:string>cartilage defect</json:string>
<json:string>groupe ensic</json:string>
<json:string>nacl solution</json:string>
<json:string>hydrophobic</json:string>
<json:string>sterilization</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Cécile Huin‐Amargier</name>
<affiliations>
<json:string>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Philippe Marchal</name>
<affiliations>
<json:string>Centre du Génie Chimique des Milieux Rhéologiquement Complexes, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Elisabeth Payan</name>
<affiliations>
<json:string>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Patrick Netter</name>
<affiliations>
<json:string>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Edith Dellacherie</name>
<affiliations>
<json:string>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</json:string>
<json:string>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hyaluronate‐based hydrogels</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>amphiphilic chemically crosslinked hyaluronate (HA)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rheological properties</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cartilage repair</value>
</json:item>
</subject>
<articleId>
<json:string>JBM30536</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>When dissolved in aqueous solutions, sodium hyaluronate substituted with low amounts of alkyl chains [amphiphilic hyaluronate (HA)] can give rise to hydrogels thanks to intermolecular reversible hydrophobic interactions, leading to a three‐dimensional (3D) network. Such hydrogels possess shear‐thinning properties and can thus be injected in cartilage defect to promote chondrocyte proliferation and cartilage repair. However, these hydrogels are only physically crosslinked and can progressively loose their 3D structure when they are in contact with aqueous fluids. To overcome this drawback, HA derivatives substituted with dodecyl chains were chemically crosslinked by a difunctional reagent, tetraethylene glycol ditosylate (TEG‐diOTs). To preserve the shear‐thinning properties of amphiphilic HA, small amounts of TEG‐diOTs were used so as to obtain a low chemical crosslinking ratio. After optimization of the synthesis parameters, aqueous solutions of the HA derivatives, crosslinked both physically and chemically, were obtained, with rheological properties improved compared to the amphiphilic polymers. As the hydrogels are aimed to cartilage repair, they were sterilized by wet heating; the effect of this treatment on the polymer characteristics was analyzed by different techniques. A similar study was carried out on HA derivatives stored under conditions mimicking physiological ones. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</abstract>
<qualityIndicators>
<score>6.759</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 792 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1457</abstractCharCount>
<pdfWordCount>4347</pdfWordCount>
<pdfCharCount>28203</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>201</abstractWordCount>
</qualityIndicators>
<title>New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Biomedical Materials Research Part A</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1552-4965</json:string>
</doi>
<issn>
<json:string>1549-3296</json:string>
</issn>
<eissn>
<json:string>1552-4965</json:string>
</eissn>
<publisherId>
<json:string>JBM</json:string>
</publisherId>
<volume>76A</volume>
<issue>2</issue>
<pages>
<first>416</first>
<last>424</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences medicales</json:string>
<json:string>informatique, statistique et modelisations biomedicales</json:string>
</inist>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1002/jbm.a.30536</json:string>
</doi>
<id>AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2005 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2006-02"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
<title level="a" type="short" xml:lang="en">HA‐Based Hydrogels for Cartilage Repair</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Cécile</forename>
<surname>Huin‐Amargier</surname>
</persName>
<affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Philippe</forename>
<surname>Marchal</surname>
</persName>
<affiliation>Centre du Génie Chimique des Milieux Rhéologiquement Complexes, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Elisabeth</forename>
<surname>Payan</surname>
</persName>
<affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Patrick</forename>
<surname>Netter</surname>
</persName>
<affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004" role="corresp">
<persName>
<forename type="first">Edith</forename>
<surname>Dellacherie</surname>
</persName>
<email>edith.dellacherie@ensic.inpl‐nancy.fr</email>
<affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France
<address>
<country key="FR"></country>
</address>
</affiliation>
<affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
</author>
<idno type="istex">AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1</idno>
<idno type="ark">ark:/67375/WNG-XM20RT3G-L</idno>
<idno type="DOI">10.1002/jbm.a.30536</idno>
<idno type="unit">JBM30536</idno>
<idno type="toTypesetVersion">file:JBM.JBM30536.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="pISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<idno type="book-DOI">10.1002/(ISSN)1552-4965</idno>
<idno type="book-part-DOI">10.1002/jbm.a.v76a:2</idno>
<idno type="product">JBM</idno>
<imprint>
<biblScope unit="vol">76A</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="416">416</biblScope>
<biblScope unit="page" to="424">424</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2006-02"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>When dissolved in aqueous solutions, sodium hyaluronate substituted with low amounts of alkyl chains [amphiphilic hyaluronate (HA)] can give rise to hydrogels thanks to intermolecular reversible hydrophobic interactions, leading to a three‐dimensional (3D) network. Such hydrogels possess shear‐thinning properties and can thus be injected in cartilage defect to promote chondrocyte proliferation and cartilage repair. However, these hydrogels are only physically crosslinked and can progressively loose their 3D structure when they are in contact with aqueous fluids. To overcome this drawback, HA derivatives substituted with dodecyl chains were chemically crosslinked by a difunctional reagent, tetraethylene glycol ditosylate (TEG‐diOTs). To preserve the shear‐thinning properties of amphiphilic HA, small amounts of TEG‐diOTs were used so as to obtain a low chemical crosslinking ratio. After optimization of the synthesis parameters, aqueous solutions of the HA derivatives, crosslinked both physically and chemically, were obtained, with rheological properties improved compared to the amphiphilic polymers. As the hydrogels are aimed to cartilage repair, they were sterilized by wet heating; the effect of this treatment on the polymer characteristics was analyzed by different techniques. A similar study was carried out on HA derivatives stored under conditions mimicking physiological ones. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">hyaluronate‐based hydrogels</term>
<term xml:id="kwd2">amphiphilic chemically crosslinked hyaluronate (HA)</term>
<term xml:id="kwd3">rheological properties</term>
<term xml:id="kwd4">cartilage repair</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1552-4965</doi>
<issn type="print">1549-3296</issn>
<issn type="electronic">1552-4965</issn>
<idGroup>
<id type="product" value="JBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A">Journal of Biomedical Materials Research Part A</title>
<title type="subtitle">An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</title>
<title type="short">J. Biomed. Mater. Res.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Journal of Biomedical Materials Research</journalTitle>
<accessionId ref="info:x-wiley/issn/00219304">0021-9304</accessionId>
<accessionId ref="info:x-wiley/issn/10974636">1097-4636</accessionId>
<pubYear year="2004">2004</pubYear>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/jbm.a.v76a:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="76">76A</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2006-02">February 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="200" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jbm.a.30536</doi>
<idGroup>
<id type="unit" value="JBM30536"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<copyright ownership="publisher">Copyright © 2005 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2005-05-19"></event>
<event type="manuscriptRevised" date="2005-07-07"></event>
<event type="manuscriptAccepted" date="2005-07-08"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2005-11-03"></event>
<event type="firstOnline" date="2005-11-03"></event>
<event type="publishedOnlineFinalForm" date="2005-12-19"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.6 mode:FullText source:FullText result:FullText" date="2010-05-10"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-28"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">416</numbering>
<numbering type="pageLast">424</numbering>
</numberingGroup>
<correspondenceTo>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JBM.JBM30536.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="34"></count>
<count type="wordTotal" number="5254"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
<title type="short" xml:lang="en">HA‐Based Hydrogels for Cartilage Repair</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Cécile</givenNames>
<familyName>Huin‐Amargier</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Philippe</givenNames>
<familyName>Marchal</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Elisabeth</givenNames>
<familyName>Payan</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Patrick</givenNames>
<familyName>Netter</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Edith</givenNames>
<familyName>Dellacherie</familyName>
</personName>
<contactDetails>
<email normalForm="edith.dellacherie@ensic.inpl-nancy.fr">edith.dellacherie@ensic.inpl‐nancy.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>Centre du Génie Chimique des Milieux Rhéologiquement Complexes, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="FR" type="organization">
<unparsedAffiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">hyaluronate‐based hydrogels</keyword>
<keyword xml:id="kwd2">amphiphilic chemically crosslinked hyaluronate (HA)</keyword>
<keyword xml:id="kwd3">rheological properties</keyword>
<keyword xml:id="kwd4">cartilage repair</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>When dissolved in aqueous solutions, sodium hyaluronate substituted with low amounts of alkyl chains [amphiphilic hyaluronate (HA)] can give rise to hydrogels thanks to intermolecular reversible hydrophobic interactions, leading to a three‐dimensional (3D) network. Such hydrogels possess shear‐thinning properties and can thus be injected in cartilage defect to promote chondrocyte proliferation and cartilage repair. However, these hydrogels are only physically crosslinked and can progressively loose their 3D structure when they are in contact with aqueous fluids. To overcome this drawback, HA derivatives substituted with dodecyl chains were chemically crosslinked by a difunctional reagent, tetraethylene glycol ditosylate (TEG‐diOTs). To preserve the shear‐thinning properties of amphiphilic HA, small amounts of TEG‐diOTs were used so as to obtain a low chemical crosslinking ratio. After optimization of the synthesis parameters, aqueous solutions of the HA derivatives, crosslinked both physically and chemically, were obtained, with rheological properties improved compared to the amphiphilic polymers. As the hydrogels are aimed to cartilage repair, they were sterilized by wet heating; the effect of this treatment on the polymer characteristics was analyzed by different techniques. A similar study was carried out on HA derivatives stored under conditions mimicking physiological ones. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>HA‐Based Hydrogels for Cartilage Repair</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cécile</namePart>
<namePart type="family">Huin‐Amargier</namePart>
<affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Marchal</namePart>
<affiliation>Centre du Génie Chimique des Milieux Rhéologiquement Complexes, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisabeth</namePart>
<namePart type="family">Payan</namePart>
<affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Netter</namePart>
<affiliation>Laboratoire de Physiopathologie et Pharmacologie Articulaires, Faculté de Médecine, BP 184, 54505 Vandœuvre‐les‐Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edith</namePart>
<namePart type="family">Dellacherie</namePart>
<affiliation>Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
<affiliation>E-mail: edith.dellacherie@ensic.inpl‐nancy.fr</affiliation>
<affiliation>Correspondence address: Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS‐INPL 7568, Groupe ENSIC, BP 451, 54001 Nancy Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006-02</dateIssued>
<dateCaptured encoding="w3cdtf">2005-05-19</dateCaptured>
<dateValid encoding="w3cdtf">2005-07-08</dateValid>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">9</extent>
<extent unit="tables">4</extent>
<extent unit="references">34</extent>
<extent unit="words">5254</extent>
</physicalDescription>
<abstract lang="en">When dissolved in aqueous solutions, sodium hyaluronate substituted with low amounts of alkyl chains [amphiphilic hyaluronate (HA)] can give rise to hydrogels thanks to intermolecular reversible hydrophobic interactions, leading to a three‐dimensional (3D) network. Such hydrogels possess shear‐thinning properties and can thus be injected in cartilage defect to promote chondrocyte proliferation and cartilage repair. However, these hydrogels are only physically crosslinked and can progressively loose their 3D structure when they are in contact with aqueous fluids. To overcome this drawback, HA derivatives substituted with dodecyl chains were chemically crosslinked by a difunctional reagent, tetraethylene glycol ditosylate (TEG‐diOTs). To preserve the shear‐thinning properties of amphiphilic HA, small amounts of TEG‐diOTs were used so as to obtain a low chemical crosslinking ratio. After optimization of the synthesis parameters, aqueous solutions of the HA derivatives, crosslinked both physically and chemically, were obtained, with rheological properties improved compared to the amphiphilic polymers. As the hydrogels are aimed to cartilage repair, they were sterilized by wet heating; the effect of this treatment on the polymer characteristics was analyzed by different techniques. A similar study was carried out on HA derivatives stored under conditions mimicking physiological ones. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>hyaluronate‐based hydrogels</topic>
<topic>amphiphilic chemically crosslinked hyaluronate (HA)</topic>
<topic>rheological properties</topic>
<topic>cartilage repair</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Biomedical Materials Research Part A</title>
<subTitle>An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Biomed. Mater. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1549-3296</identifier>
<identifier type="eISSN">1552-4965</identifier>
<identifier type="DOI">10.1002/(ISSN)1552-4965</identifier>
<identifier type="PublisherID">JBM</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>76A</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>416</start>
<end>424</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Journal of Biomedical Materials Research</title>
</titleInfo>
<identifier type="ISSN">0021-9304</identifier>
<identifier type="ISSN">1097-4636</identifier>
<part>
<date point="end">2004</date>
</part>
</relatedItem>
<identifier type="istex">AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1</identifier>
<identifier type="ark">ark:/67375/WNG-XM20RT3G-L</identifier>
<identifier type="DOI">10.1002/jbm.a.30536</identifier>
<identifier type="ArticleID">JBM30536</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2005 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000650 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000650 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:AC223DD6B5CDFD0D78309FFFFA76AE50CB54BCA1
   |texte=   New physically and chemically crosslinked hyaluronate (HA)‐based hydrogels for cartilage repair
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024