Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions

Identifieur interne : 000133 ( Istex/Corpus ); précédent : 000132; suivant : 000134

Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions

Auteurs : M. Hlavacek ; F. Bouchet

Source :

RBID : ISTEX:D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF

English descriptors

Abstract

Abstract: We developed equations for the blocking laws (complete, standard and intermediate) at a constant flowrate and we derive a general expression related to the instantaneous hydraulic permeability of the deposit dt/(ΔP). Microfiltration of BSA solutions is carried out at a constant flowrate and shows that both the type of membrane and physico-chemical conditions influence the pressure drop. The curves of pressure as a function of time are fitted by the intermediate law that enables one to determine the clogging coefficient of the solution σ and quantify the fouling through the ratio (σ/gE) of the clogging coefficient σ and the porosity ϵ. The intermediate law predicts that the increase in pressure drop is inversely proportional to the membrane porosity. The experimental results are in reasonably good agreement with the theory as track-etched Nuclepore membranes (ϵ=8%) foul 5 to 10 times more rapidly than microporous Millipore membranes (ϵ=80%). Fouling is more apparent at pH 3.6 than at pH 4.6 and pH 5.6. This is explained by electrical protein-membrane attraction at pH 3.6. Scanning electron micrographs show that the fouling is mostly a surface deposit made up of protein aggregates. The deposit turns to be thicker at pH 5.6 (3–5μm) than at pH 4.6 (0.5–1 μm). At pH 3.6, the deposit slightly penetrates the membrane and is entangled with membrane fibers on the upstream side.

Url:
DOI: 10.1016/0376-7388(93)85193-Z

Links to Exploration step

ISTEX:D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</title>
<author>
<name sortKey="Hlavacek, M" sort="Hlavacek, M" uniqKey="Hlavacek M" first="M." last="Hlavacek">M. Hlavacek</name>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bouchet, F" sort="Bouchet, F" uniqKey="Bouchet F" first="F." last="Bouchet">F. Bouchet</name>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1016/0376-7388(93)85193-Z</idno>
<idno type="url">https://api.istex.fr/document/D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000133</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000133</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</title>
<author>
<name sortKey="Hlavacek, M" sort="Hlavacek, M" uniqKey="Hlavacek M" first="M." last="Hlavacek">M. Hlavacek</name>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bouchet, F" sort="Bouchet, F" uniqKey="Bouchet F" first="F." last="Bouchet">F. Bouchet</name>
<affiliation>
<mods:affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Membrane Science</title>
<title level="j" type="abbrev">MEMSCI</title>
<idno type="ISSN">0376-7388</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993">1993</date>
<biblScope unit="volume">82</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="285">285</biblScope>
<biblScope unit="page" to="295">295</biblScope>
</imprint>
<idno type="ISSN">0376-7388</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0376-7388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bouchet</term>
<term>Bovine serum albumin</term>
<term>Cake filtration</term>
<term>Constant flowrate</term>
<term>Constant pressure</term>
<term>Constant pressure experiments</term>
<term>Crossflow microfiltration</term>
<term>Different conditions</term>
<term>Different laws</term>
<term>Different membranes</term>
<term>Electrical attraction</term>
<term>Electrical charge</term>
<term>Electrical repulsion</term>
<term>Electron micrographs</term>
<term>Elsevier science publishers</term>
<term>Experimental results</term>
<term>Filtrate</term>
<term>Filtrate volume</term>
<term>Filtration</term>
<term>Flow regime</term>
<term>Flowrate</term>
<term>Flux decline</term>
<term>Fouling</term>
<term>Fouling ability</term>
<term>Fouling rate</term>
<term>Free pore radius</term>
<term>Free surface</term>
<term>General equation</term>
<term>General expression</term>
<term>Good agreement</term>
<term>Gvhp</term>
<term>Gvwp</term>
<term>Hlavacek</term>
<term>Hydraulic resistance</term>
<term>Hydrophilic millipore gswp</term>
<term>Instantaneous resistance</term>
<term>Ionic strength</term>
<term>Isoelectric point</term>
<term>Linear regression</term>
<term>Linearized form</term>
<term>Membrane</term>
<term>Membrane area</term>
<term>Membrane fouling</term>
<term>Membrane pore size</term>
<term>Membrane surface</term>
<term>Microfiltration</term>
<term>Microporous membranes</term>
<term>Millipore</term>
<term>Millipore gswp</term>
<term>Millipore gvhp</term>
<term>Millipore gvwp</term>
<term>Millipore membranes</term>
<term>Nominal pore size</term>
<term>Nuclepore</term>
<term>Nuclepore membrane</term>
<term>Nuclepore membranes</term>
<term>Other hand</term>
<term>Pore</term>
<term>Porosity</term>
<term>Pressure curves</term>
<term>Pressure drop</term>
<term>Pressure transducer</term>
<term>Protein aggregates</term>
<term>Protein molecules</term>
<term>Protein solutions</term>
<term>Several times</term>
<term>Shear conditions</term>
<term>Slow increase</term>
<term>Surface deposit</term>
<term>Ultrafiltration</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Bouchet</term>
<term>Bovine serum albumin</term>
<term>Cake filtration</term>
<term>Constant flowrate</term>
<term>Constant pressure</term>
<term>Constant pressure experiments</term>
<term>Crossflow microfiltration</term>
<term>Different conditions</term>
<term>Different laws</term>
<term>Different membranes</term>
<term>Electrical attraction</term>
<term>Electrical charge</term>
<term>Electrical repulsion</term>
<term>Electron micrographs</term>
<term>Elsevier science publishers</term>
<term>Experimental results</term>
<term>Filtrate</term>
<term>Filtrate volume</term>
<term>Filtration</term>
<term>Flow regime</term>
<term>Flowrate</term>
<term>Flux decline</term>
<term>Fouling</term>
<term>Fouling ability</term>
<term>Fouling rate</term>
<term>Free pore radius</term>
<term>Free surface</term>
<term>General equation</term>
<term>General expression</term>
<term>Good agreement</term>
<term>Gvhp</term>
<term>Gvwp</term>
<term>Hlavacek</term>
<term>Hydraulic resistance</term>
<term>Hydrophilic millipore gswp</term>
<term>Instantaneous resistance</term>
<term>Ionic strength</term>
<term>Isoelectric point</term>
<term>Linear regression</term>
<term>Linearized form</term>
<term>Membrane</term>
<term>Membrane area</term>
<term>Membrane fouling</term>
<term>Membrane pore size</term>
<term>Membrane surface</term>
<term>Microfiltration</term>
<term>Microporous membranes</term>
<term>Millipore</term>
<term>Millipore gswp</term>
<term>Millipore gvhp</term>
<term>Millipore gvwp</term>
<term>Millipore membranes</term>
<term>Nominal pore size</term>
<term>Nuclepore</term>
<term>Nuclepore membrane</term>
<term>Nuclepore membranes</term>
<term>Other hand</term>
<term>Pore</term>
<term>Porosity</term>
<term>Pressure curves</term>
<term>Pressure drop</term>
<term>Pressure transducer</term>
<term>Protein aggregates</term>
<term>Protein molecules</term>
<term>Protein solutions</term>
<term>Several times</term>
<term>Shear conditions</term>
<term>Slow increase</term>
<term>Surface deposit</term>
<term>Ultrafiltration</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: We developed equations for the blocking laws (complete, standard and intermediate) at a constant flowrate and we derive a general expression related to the instantaneous hydraulic permeability of the deposit dt/(ΔP). Microfiltration of BSA solutions is carried out at a constant flowrate and shows that both the type of membrane and physico-chemical conditions influence the pressure drop. The curves of pressure as a function of time are fitted by the intermediate law that enables one to determine the clogging coefficient of the solution σ and quantify the fouling through the ratio (σ/gE) of the clogging coefficient σ and the porosity ϵ. The intermediate law predicts that the increase in pressure drop is inversely proportional to the membrane porosity. The experimental results are in reasonably good agreement with the theory as track-etched Nuclepore membranes (ϵ=8%) foul 5 to 10 times more rapidly than microporous Millipore membranes (ϵ=80%). Fouling is more apparent at pH 3.6 than at pH 4.6 and pH 5.6. This is explained by electrical protein-membrane attraction at pH 3.6. Scanning electron micrographs show that the fouling is mostly a surface deposit made up of protein aggregates. The deposit turns to be thicker at pH 5.6 (3–5μm) than at pH 4.6 (0.5–1 μm). At pH 3.6, the deposit slightly penetrates the membrane and is entangled with membrane fibers on the upstream side.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>filtration</json:string>
<json:string>millipore</json:string>
<json:string>microfiltration</json:string>
<json:string>pressure drop</json:string>
<json:string>flowrate</json:string>
<json:string>nuclepore</json:string>
<json:string>filtrate</json:string>
<json:string>constant flowrate</json:string>
<json:string>protein solutions</json:string>
<json:string>bouchet</json:string>
<json:string>hlavacek</json:string>
<json:string>pore</json:string>
<json:string>membrane</json:string>
<json:string>ultrafiltration</json:string>
<json:string>millipore membranes</json:string>
<json:string>gvwp</json:string>
<json:string>gvhp</json:string>
<json:string>nuclepore membranes</json:string>
<json:string>flux decline</json:string>
<json:string>general expression</json:string>
<json:string>nuclepore membrane</json:string>
<json:string>membrane surface</json:string>
<json:string>membrane area</json:string>
<json:string>fouling</json:string>
<json:string>slow increase</json:string>
<json:string>millipore gvhp</json:string>
<json:string>protein aggregates</json:string>
<json:string>bovine serum albumin</json:string>
<json:string>different membranes</json:string>
<json:string>membrane fouling</json:string>
<json:string>instantaneous resistance</json:string>
<json:string>free surface</json:string>
<json:string>linearized form</json:string>
<json:string>ionic strength</json:string>
<json:string>pressure transducer</json:string>
<json:string>experimental results</json:string>
<json:string>porosity</json:string>
<json:string>millipore gswp</json:string>
<json:string>free pore radius</json:string>
<json:string>shear conditions</json:string>
<json:string>linear regression</json:string>
<json:string>protein molecules</json:string>
<json:string>general equation</json:string>
<json:string>crossflow microfiltration</json:string>
<json:string>constant pressure</json:string>
<json:string>cake filtration</json:string>
<json:string>nominal pore size</json:string>
<json:string>membrane pore size</json:string>
<json:string>filtrate volume</json:string>
<json:string>different laws</json:string>
<json:string>elsevier science publishers</json:string>
<json:string>surface deposit</json:string>
<json:string>millipore gvwp</json:string>
<json:string>hydraulic resistance</json:string>
<json:string>different conditions</json:string>
<json:string>electrical attraction</json:string>
<json:string>electron micrographs</json:string>
<json:string>good agreement</json:string>
<json:string>hydrophilic millipore gswp</json:string>
<json:string>constant pressure experiments</json:string>
<json:string>several times</json:string>
<json:string>isoelectric point</json:string>
<json:string>electrical repulsion</json:string>
<json:string>electrical charge</json:string>
<json:string>pressure curves</json:string>
<json:string>other hand</json:string>
<json:string>fouling ability</json:string>
<json:string>fouling rate</json:string>
<json:string>microporous membranes</json:string>
<json:string>flow regime</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>M. Hlavacek</name>
<affiliations>
<json:string>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</json:string>
</affiliations>
</json:item>
<json:item>
<name>F. Bouchet</name>
<affiliations>
<json:string>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>blocking laws</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bovine serum albumin</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flowrate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>microfiltration, dead-end</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fouling</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>We developed equations for the blocking laws (complete, standard and intermediate) at a constant flowrate and we derive a general expression related to the instantaneous hydraulic permeability of the deposit dt/(ΔP). Microfiltration of BSA solutions is carried out at a constant flowrate and shows that both the type of membrane and physico-chemical conditions influence the pressure drop. The curves of pressure as a function of time are fitted by the intermediate law that enables one to determine the clogging coefficient of the solution σ and quantify the fouling through the ratio (σ/gE) of the clogging coefficient σ and the porosity ϵ. The intermediate law predicts that the increase in pressure drop is inversely proportional to the membrane porosity. The experimental results are in reasonably good agreement with the theory as track-etched Nuclepore membranes (ϵ=8%) foul 5 to 10 times more rapidly than microporous Millipore membranes (ϵ=80%). Fouling is more apparent at pH 3.6 than at pH 4.6 and pH 5.6. This is explained by electrical protein-membrane attraction at pH 3.6. Scanning electron micrographs show that the fouling is mostly a surface deposit made up of protein aggregates. The deposit turns to be thicker at pH 5.6 (3–5μm) than at pH 4.6 (0.5–1 μm). At pH 3.6, the deposit slightly penetrates the membrane and is entangled with membrane fibers on the upstream side.</abstract>
<qualityIndicators>
<score>7.747</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>546 x 757 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1391</abstractCharCount>
<pdfWordCount>4583</pdfWordCount>
<pdfCharCount>27076</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>222</abstractWordCount>
</qualityIndicators>
<title>Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</title>
<pii>
<json:string>0376-7388(93)85193-Z</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Recent Developments in Separation Science</title>
<language>
<json:string>unknown</json:string>
</language>
<volume>2</volume>
<pages>
<first>205</first>
<last>225</last>
</pages>
<editor>
<json:item>
<name>N.N. Li</name>
</json:item>
</editor>
</serie>
<host>
<title>Journal of Membrane Science</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1993</publicationDate>
<issn>
<json:string>0376-7388</json:string>
</issn>
<pii>
<json:string>S0376-7388(00)X0365-1</json:string>
</pii>
<volume>82</volume>
<issue>3</issue>
<pages>
<first>285</first>
<last>295</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>polymer science</json:string>
<json:string>engineering, chemical</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>engineering</json:string>
<json:string>chemical engineering</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1993</publicationDate>
<copyrightDate>1993</copyrightDate>
<doi>
<json:string>10.1016/0376-7388(93)85193-Z</json:string>
</doi>
<id>D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1993</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</title>
<author xml:id="author-0000">
<persName>
<forename type="first">M.</forename>
<surname>Hlavacek</surname>
</persName>
<affiliation>To whom correspondence should be addressed. Present address: School of Chemical Engineering, University of New South Wales, P.O. Box 1, Kensington 2033, N.S.W., Australia.</affiliation>
<affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">F.</forename>
<surname>Bouchet</surname>
</persName>
<affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</affiliation>
</author>
<idno type="istex">D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF</idno>
<idno type="DOI">10.1016/0376-7388(93)85193-Z</idno>
<idno type="PII">0376-7388(93)85193-Z</idno>
</analytic>
<monogr>
<title level="j">Journal of Membrane Science</title>
<title level="j" type="abbrev">MEMSCI</title>
<idno type="pISSN">0376-7388</idno>
<idno type="PII">S0376-7388(00)X0365-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993"></date>
<biblScope unit="volume">82</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="285">285</biblScope>
<biblScope unit="page" to="295">295</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1993</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>We developed equations for the blocking laws (complete, standard and intermediate) at a constant flowrate and we derive a general expression related to the instantaneous hydraulic permeability of the deposit dt/(ΔP). Microfiltration of BSA solutions is carried out at a constant flowrate and shows that both the type of membrane and physico-chemical conditions influence the pressure drop. The curves of pressure as a function of time are fitted by the intermediate law that enables one to determine the clogging coefficient of the solution σ and quantify the fouling through the ratio (σ/gE) of the clogging coefficient σ and the porosity ϵ. The intermediate law predicts that the increase in pressure drop is inversely proportional to the membrane porosity. The experimental results are in reasonably good agreement with the theory as track-etched Nuclepore membranes (ϵ=8%) foul 5 to 10 times more rapidly than microporous Millipore membranes (ϵ=80%). Fouling is more apparent at pH 3.6 than at pH 4.6 and pH 5.6. This is explained by electrical protein-membrane attraction at pH 3.6. Scanning electron micrographs show that the fouling is mostly a surface deposit made up of protein aggregates. The deposit turns to be thicker at pH 5.6 (3–5μm) than at pH 4.6 (0.5–1 μm). At pH 3.6, the deposit slightly penetrates the membrane and is entangled with membrane fibers on the upstream side.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>blocking laws</term>
</item>
<item>
<term>bovine serum albumin</term>
</item>
<item>
<term>flowrate</term>
</item>
<item>
<term>microfiltration, dead-end</term>
</item>
<item>
<term>fouling</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1993">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>MEMSCI</jid>
<aid>9385193Z</aid>
<ce:pii>0376-7388(93)85193-Z</ce:pii>
<ce:doi>10.1016/0376-7388(93)85193-Z</ce:doi>
<ce:copyright type="unknown" year="1993"></ce:copyright>
</item-info>
<head>
<ce:title>Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Hlavacek</ce:surname>
<ce:cross-ref refid="COR1">
<ce:sup></ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>F.</ce:given-name>
<ce:surname>Bouchet</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>To whom correspondence should be addressed. Present address: School of Chemical Engineering, University of New South Wales, P.O. Box 1, Kensington 2033, N.S.W., Australia.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="21" month="12" year="1992"></ce:date-received>
<ce:date-accepted day="2" month="4" year="1993"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>We developed equations for the blocking laws (complete, standard and intermediate) at a constant flowrate and we derive a general expression related to the instantaneous hydraulic permeability of the deposit d
<ce:italic>t</ce:italic>
/(Δ
<ce:italic>P</ce:italic>
). Microfiltration of BSA solutions is carried out at a constant flowrate and shows that both the type of membrane and physico-chemical conditions influence the pressure drop. The curves of pressure as a function of time are fitted by the intermediate law that enables one to determine the clogging coefficient of the solution σ and quantify the fouling through the ratio (σ/gE) of the clogging coefficient σ and the porosity ϵ. The intermediate law predicts that the increase in pressure drop is inversely proportional to the membrane porosity. The experimental results are in reasonably good agreement with the theory as track-etched Nuclepore membranes (ϵ=8%) foul 5 to 10 times more rapidly than microporous Millipore membranes (ϵ=80%). Fouling is more apparent at pH 3.6 than at pH 4.6 and pH 5.6. This is explained by electrical protein-membrane attraction at pH 3.6. Scanning electron micrographs show that the fouling is mostly a surface deposit made up of protein aggregates. The deposit turns to be thicker at pH 5.6 (3–5μm) than at pH 4.6 (0.5–1 μm). At pH 3.6, the deposit slightly penetrates the membrane and is entangled with membrane fibers on the upstream side.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>blocking laws</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>bovine serum albumin</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>flowrate</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>microfiltration, dead-end</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>fouling</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Hlavacek</namePart>
<affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</affiliation>
<description>To whom correspondence should be addressed. Present address: School of Chemical Engineering, University of New South Wales, P.O. Box 1, Kensington 2033, N.S.W., Australia.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">F.</namePart>
<namePart type="family">Bouchet</namePart>
<affiliation>LSGC-CNRS-ENSIC, 1 rue Grandville, BP 451, 54001 Nancy Cedex France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1993</dateIssued>
<copyrightDate encoding="w3cdtf">1993</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: We developed equations for the blocking laws (complete, standard and intermediate) at a constant flowrate and we derive a general expression related to the instantaneous hydraulic permeability of the deposit dt/(ΔP). Microfiltration of BSA solutions is carried out at a constant flowrate and shows that both the type of membrane and physico-chemical conditions influence the pressure drop. The curves of pressure as a function of time are fitted by the intermediate law that enables one to determine the clogging coefficient of the solution σ and quantify the fouling through the ratio (σ/gE) of the clogging coefficient σ and the porosity ϵ. The intermediate law predicts that the increase in pressure drop is inversely proportional to the membrane porosity. The experimental results are in reasonably good agreement with the theory as track-etched Nuclepore membranes (ϵ=8%) foul 5 to 10 times more rapidly than microporous Millipore membranes (ϵ=80%). Fouling is more apparent at pH 3.6 than at pH 4.6 and pH 5.6. This is explained by electrical protein-membrane attraction at pH 3.6. Scanning electron micrographs show that the fouling is mostly a surface deposit made up of protein aggregates. The deposit turns to be thicker at pH 5.6 (3–5μm) than at pH 4.6 (0.5–1 μm). At pH 3.6, the deposit slightly penetrates the membrane and is entangled with membrane fibers on the upstream side.</abstract>
<subject>
<genre>Keywords</genre>
<topic>blocking laws</topic>
<topic>bovine serum albumin</topic>
<topic>flowrate</topic>
<topic>microfiltration, dead-end</topic>
<topic>fouling</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Membrane Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MEMSCI</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19930729</dateIssued>
</originInfo>
<identifier type="ISSN">0376-7388</identifier>
<identifier type="PII">S0376-7388(00)X0365-1</identifier>
<part>
<date>19930729</date>
<detail type="volume">
<number>82</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>211</start>
<end>308</end>
</extent>
<extent unit="pages">
<start>285</start>
<end>295</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF</identifier>
<identifier type="ark">ark:/67375/6H6-X829S618-D</identifier>
<identifier type="DOI">10.1016/0376-7388(93)85193-Z</identifier>
<identifier type="PII">0376-7388(93)85193-Z</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF/metadata/json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000133 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000133 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D0FBD81D7D0D4B2E8F6C8ED6E4414F0B08826EFF
   |texte=   Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024