Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nilpotent adjacency matrices, random graphs and quantum random variables

Identifieur interne : 000315 ( PascalFrancis/Corpus ); précédent : 000314; suivant : 000316

Nilpotent adjacency matrices, random graphs and quantum random variables

Auteurs : René Schott ; George Stacey Staples

Source :

RBID : Pascal:08-0216287

Descripteurs français

English descriptors

Abstract

While a number of researchers have previously investigated the relationship between graph theory and quantum probability, the current work explores a new perspective. The approach of this paper is to begin with an arbitrary graph having no previously established relationship to quantum probability and to use that graph to construct a quantum probability space in which moments of quantum random variables reveal information about the graph's structure. Given an arbitrary finite graph and arbitrary odd integer m≥ 3, fermion annihilation operators are used to construct a family of quantum random variables whose mth moments correspond to the graph's m-cycles. The approach is then generalized to recover a graph's m-cycles for any integer m≥ 3 by defining nilpotent adjacency operators in terms of null-square generators of an infinite-dimensional Abelian algebra. It is shown that ordering the vertices of a simple graph induces a canonical decompositionΨ =Ψ+ + Ψ- on any nilpotent adjacency operator Ψ. The work concludes with applications to Markov chains and random graphs.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1751-8113
A03   1    @0 J. phys., A, math. theor. : (Print)
A05       @2 41
A06       @2 15
A08 01  1  ENG  @1 Nilpotent adjacency matrices, random graphs and quantum random variables
A11 01  1    @1 SCHOTT (René)
A11 02  1    @1 STACEY STAPLES (George)
A14 01      @1 IECN and LORIA Université Henri Poincaré-Nancy I, BP 239 @2 54506 Vandoeuvre-lès-Nancy @3 FRA @Z 1 aut.
A14 02      @1 Department of Mathematics and Statistics, Southern Illinois University Edwardsville @2 Edwardsville, IL 62026-1653 @3 USA @Z 2 aut.
A20       @2 155205.1-155205.16
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 577C @5 354000172636590090
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 20 ref.
A47 01  1    @0 08-0216287
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of physics. A, Mathematical and theoretical : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 While a number of researchers have previously investigated the relationship between graph theory and quantum probability, the current work explores a new perspective. The approach of this paper is to begin with an arbitrary graph having no previously established relationship to quantum probability and to use that graph to construct a quantum probability space in which moments of quantum random variables reveal information about the graph's structure. Given an arbitrary finite graph and arbitrary odd integer m≥ 3, fermion annihilation operators are used to construct a family of quantum random variables whose mth moments correspond to the graph's m-cycles. The approach is then generalized to recover a graph's m-cycles for any integer m≥ 3 by defining nilpotent adjacency operators in terms of null-square generators of an infinite-dimensional Abelian algebra. It is shown that ordering the vertices of a simple graph induces a canonical decompositionΨ =Ψ+ + Ψ- on any nilpotent adjacency operator Ψ. The work concludes with applications to Markov chains and random graphs.
C02 01  3    @0 001B00
C03 01  X  FRE  @0 Matrice aléatoire @5 26
C03 01  X  ENG  @0 Random matrix @5 26
C03 01  X  SPA  @0 Matriz aleatoria @5 26
C03 02  X  FRE  @0 Graphe aléatoire @5 27
C03 02  X  ENG  @0 Random graph @5 27
C03 02  X  SPA  @0 Grafo aleatorio @5 27
C03 03  X  FRE  @0 Graphe quantique @5 28
C03 03  X  ENG  @0 Quantum graph @5 28
C03 03  X  SPA  @0 Grafo cuántico @5 28
C03 04  X  FRE  @0 Variable aléatoire @5 29
C03 04  X  ENG  @0 Random variable @5 29
C03 04  X  SPA  @0 Variable aléatoria @5 29
C03 05  3  FRE  @0 Théorie quantique @5 30
C03 05  3  ENG  @0 Quantum theory @5 30
C03 06  3  FRE  @0 Probabilité @5 31
C03 06  3  ENG  @0 Probability @5 31
C03 07  X  FRE  @0 Graphe fini @5 32
C03 07  X  ENG  @0 Finite graph @5 32
C03 07  X  SPA  @0 Grafo finito @5 32
C03 08  3  FRE  @0 Fermion @5 33
C03 08  3  ENG  @0 Fermions @5 33
C03 09  3  FRE  @0 Opérateur annihilation @5 34
C03 09  3  ENG  @0 Annihilation operators @5 34
C03 10  X  FRE  @0 Dimension infinie @5 35
C03 10  X  ENG  @0 Infinite dimension @5 35
C03 10  X  SPA  @0 Dimensión infinita @5 35
C03 11  X  FRE  @0 Vertex @5 36
C03 11  X  ENG  @0 Vertex @5 36
C03 11  X  SPA  @0 Vértice @5 36
C03 12  X  FRE  @0 Chaîne Markov @5 37
C03 12  X  ENG  @0 Markov chain @5 37
C03 12  X  SPA  @0 Cadena Markov @5 37
N21       @1 140
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0216287 INIST
ET : Nilpotent adjacency matrices, random graphs and quantum random variables
AU : SCHOTT (René); STACEY STAPLES (George)
AF : IECN and LORIA Université Henri Poincaré-Nancy I, BP 239/54506 Vandoeuvre-lès-Nancy/France (1 aut.); Department of Mathematics and Statistics, Southern Illinois University Edwardsville/Edwardsville, IL 62026-1653/Etats-Unis (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of physics. A, Mathematical and theoretical : (Print); ISSN 1751-8113; Royaume-Uni; Da. 2008; Vol. 41; No. 15; 155205.1-155205.16; Bibl. 20 ref.
LA : Anglais
EA : While a number of researchers have previously investigated the relationship between graph theory and quantum probability, the current work explores a new perspective. The approach of this paper is to begin with an arbitrary graph having no previously established relationship to quantum probability and to use that graph to construct a quantum probability space in which moments of quantum random variables reveal information about the graph's structure. Given an arbitrary finite graph and arbitrary odd integer m≥ 3, fermion annihilation operators are used to construct a family of quantum random variables whose mth moments correspond to the graph's m-cycles. The approach is then generalized to recover a graph's m-cycles for any integer m≥ 3 by defining nilpotent adjacency operators in terms of null-square generators of an infinite-dimensional Abelian algebra. It is shown that ordering the vertices of a simple graph induces a canonical decompositionΨ =Ψ+ + Ψ- on any nilpotent adjacency operator Ψ. The work concludes with applications to Markov chains and random graphs.
CC : 001B00
FD : Matrice aléatoire; Graphe aléatoire; Graphe quantique; Variable aléatoire; Théorie quantique; Probabilité; Graphe fini; Fermion; Opérateur annihilation; Dimension infinie; Vertex; Chaîne Markov
ED : Random matrix; Random graph; Quantum graph; Random variable; Quantum theory; Probability; Finite graph; Fermions; Annihilation operators; Infinite dimension; Vertex; Markov chain
SD : Matriz aleatoria; Grafo aleatorio; Grafo cuántico; Variable aléatoria; Grafo finito; Dimensión infinita; Vértice; Cadena Markov
LO : INIST-577C.354000172636590090
ID : 08-0216287

Links to Exploration step

Pascal:08-0216287

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nilpotent adjacency matrices, random graphs and quantum random variables</title>
<author>
<name sortKey="Schott, Rene" sort="Schott, Rene" uniqKey="Schott R" first="René" last="Schott">René Schott</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IECN and LORIA Université Henri Poincaré-Nancy I, BP 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stacey Staples, George" sort="Stacey Staples, George" uniqKey="Stacey Staples G" first="George" last="Stacey Staples">George Stacey Staples</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Mathematics and Statistics, Southern Illinois University Edwardsville</s1>
<s2>Edwardsville, IL 62026-1653</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0216287</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0216287 INIST</idno>
<idno type="RBID">Pascal:08-0216287</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000315</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Nilpotent adjacency matrices, random graphs and quantum random variables</title>
<author>
<name sortKey="Schott, Rene" sort="Schott, Rene" uniqKey="Schott R" first="René" last="Schott">René Schott</name>
<affiliation>
<inist:fA14 i1="01">
<s1>IECN and LORIA Université Henri Poincaré-Nancy I, BP 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stacey Staples, George" sort="Stacey Staples, George" uniqKey="Stacey Staples G" first="George" last="Stacey Staples">George Stacey Staples</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Mathematics and Statistics, Southern Illinois University Edwardsville</s1>
<s2>Edwardsville, IL 62026-1653</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. A, Mathematical and theoretical : (Print)</title>
<title level="j" type="abbreviated">J. phys., A, math. theor. : (Print)</title>
<idno type="ISSN">1751-8113</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. A, Mathematical and theoretical : (Print)</title>
<title level="j" type="abbreviated">J. phys., A, math. theor. : (Print)</title>
<idno type="ISSN">1751-8113</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annihilation operators</term>
<term>Fermions</term>
<term>Finite graph</term>
<term>Infinite dimension</term>
<term>Markov chain</term>
<term>Probability</term>
<term>Quantum graph</term>
<term>Quantum theory</term>
<term>Random graph</term>
<term>Random matrix</term>
<term>Random variable</term>
<term>Vertex</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Matrice aléatoire</term>
<term>Graphe aléatoire</term>
<term>Graphe quantique</term>
<term>Variable aléatoire</term>
<term>Théorie quantique</term>
<term>Probabilité</term>
<term>Graphe fini</term>
<term>Fermion</term>
<term>Opérateur annihilation</term>
<term>Dimension infinie</term>
<term>Vertex</term>
<term>Chaîne Markov</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While a number of researchers have previously investigated the relationship between graph theory and quantum probability, the current work explores a new perspective. The approach of this paper is to begin with an arbitrary graph having no previously established relationship to quantum probability and to use that graph to construct a quantum probability space in which moments of quantum random variables reveal information about the graph's structure. Given an arbitrary finite graph and arbitrary odd integer m≥ 3, fermion annihilation operators are used to construct a family of quantum random variables whose mth moments correspond to the graph's m-cycles. The approach is then generalized to recover a graph's m-cycles for any integer m≥ 3 by defining nilpotent adjacency operators in terms of null-square generators of an infinite-dimensional Abelian algebra. It is shown that ordering the vertices of a simple graph induces a canonical decompositionΨ =Ψ
<sup>+</sup>
+ Ψ
<sup>-</sup>
on any nilpotent adjacency operator Ψ. The work concludes with applications to Markov chains and random graphs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1751-8113</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys., A, math. theor. : (Print)</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nilpotent adjacency matrices, random graphs and quantum random variables</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SCHOTT (René)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STACEY STAPLES (George)</s1>
</fA11>
<fA14 i1="01">
<s1>IECN and LORIA Université Henri Poincaré-Nancy I, BP 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Mathematics and Statistics, Southern Illinois University Edwardsville</s1>
<s2>Edwardsville, IL 62026-1653</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>155205.1-155205.16</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577C</s2>
<s5>354000172636590090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0216287</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. A, Mathematical and theoretical : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>While a number of researchers have previously investigated the relationship between graph theory and quantum probability, the current work explores a new perspective. The approach of this paper is to begin with an arbitrary graph having no previously established relationship to quantum probability and to use that graph to construct a quantum probability space in which moments of quantum random variables reveal information about the graph's structure. Given an arbitrary finite graph and arbitrary odd integer m≥ 3, fermion annihilation operators are used to construct a family of quantum random variables whose mth moments correspond to the graph's m-cycles. The approach is then generalized to recover a graph's m-cycles for any integer m≥ 3 by defining nilpotent adjacency operators in terms of null-square generators of an infinite-dimensional Abelian algebra. It is shown that ordering the vertices of a simple graph induces a canonical decompositionΨ =Ψ
<sup>+</sup>
+ Ψ
<sup>-</sup>
on any nilpotent adjacency operator Ψ. The work concludes with applications to Markov chains and random graphs.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Matrice aléatoire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Random matrix</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Matriz aleatoria</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Graphe aléatoire</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Random graph</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Grafo aleatorio</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Graphe quantique</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Quantum graph</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Grafo cuántico</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Variable aléatoire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Random variable</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Variable aléatoria</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Théorie quantique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum theory</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Probabilité</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Probability</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Graphe fini</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Finite graph</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Grafo finito</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Fermion</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Fermions</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Opérateur annihilation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Annihilation operators</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dimension infinie</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Infinite dimension</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Dimensión infinita</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Vertex</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Vertex</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Vértice</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Chaîne Markov</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Markov chain</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cadena Markov</s0>
<s5>37</s5>
</fC03>
<fN21>
<s1>140</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0216287 INIST</NO>
<ET>Nilpotent adjacency matrices, random graphs and quantum random variables</ET>
<AU>SCHOTT (René); STACEY STAPLES (George)</AU>
<AF>IECN and LORIA Université Henri Poincaré-Nancy I, BP 239/54506 Vandoeuvre-lès-Nancy/France (1 aut.); Department of Mathematics and Statistics, Southern Illinois University Edwardsville/Edwardsville, IL 62026-1653/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of physics. A, Mathematical and theoretical : (Print); ISSN 1751-8113; Royaume-Uni; Da. 2008; Vol. 41; No. 15; 155205.1-155205.16; Bibl. 20 ref.</SO>
<LA>Anglais</LA>
<EA>While a number of researchers have previously investigated the relationship between graph theory and quantum probability, the current work explores a new perspective. The approach of this paper is to begin with an arbitrary graph having no previously established relationship to quantum probability and to use that graph to construct a quantum probability space in which moments of quantum random variables reveal information about the graph's structure. Given an arbitrary finite graph and arbitrary odd integer m≥ 3, fermion annihilation operators are used to construct a family of quantum random variables whose mth moments correspond to the graph's m-cycles. The approach is then generalized to recover a graph's m-cycles for any integer m≥ 3 by defining nilpotent adjacency operators in terms of null-square generators of an infinite-dimensional Abelian algebra. It is shown that ordering the vertices of a simple graph induces a canonical decompositionΨ =Ψ
<sup>+</sup>
+ Ψ
<sup>-</sup>
on any nilpotent adjacency operator Ψ. The work concludes with applications to Markov chains and random graphs.</EA>
<CC>001B00</CC>
<FD>Matrice aléatoire; Graphe aléatoire; Graphe quantique; Variable aléatoire; Théorie quantique; Probabilité; Graphe fini; Fermion; Opérateur annihilation; Dimension infinie; Vertex; Chaîne Markov</FD>
<ED>Random matrix; Random graph; Quantum graph; Random variable; Quantum theory; Probability; Finite graph; Fermions; Annihilation operators; Infinite dimension; Vertex; Markov chain</ED>
<SD>Matriz aleatoria; Grafo aleatorio; Grafo cuántico; Variable aléatoria; Grafo finito; Dimensión infinita; Vértice; Cadena Markov</SD>
<LO>INIST-577C.354000172636590090</LO>
<ID>08-0216287</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0216287
   |texte=   Nilpotent adjacency matrices, random graphs and quantum random variables
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022