Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the complexity of real root isolation using continued fractions

Identifieur interne : 000314 ( PascalFrancis/Corpus ); précédent : 000313; suivant : 000315

On the complexity of real root isolation using continued fractions

Auteurs : Elias P. Tsigaridas ; Ioannis Z. Emiris

Source :

RBID : Pascal:08-0241602

Descripteurs français

English descriptors

Abstract

We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;B (d6 + d4τ2), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d3τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0304-3975
A02 01      @0 TCSCDI
A03   1    @0 Theor. comput. sci.
A05       @2 392
A06       @2 1-3
A08 01  1  ENG  @1 On the complexity of real root isolation using continued fractions
A09 01  1  ENG  @1 Computational Algebraic Geometry and Applications
A11 01  1    @1 TSIGARIDAS (Elias P.)
A11 02  1    @1 EMIRIS (Ioannis Z.)
A12 01  1    @1 BUSE (L.) @9 ed.
A12 02  1    @1 ELKADI (M.) @9 ed.
A12 03  1    @1 MOURRAIN (B.) @9 ed.
A14 01      @1 INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101 @2 54602 Villers-des-Nancy @3 FRA @Z 1 aut.
A14 02      @1 Department of Informatics and Telecommunications, National Kapodistrian University of Athens @2 Hellas @3 GRC @Z 2 aut.
A15 01      @1 GALAAD, INRIA Sophia Antipolis-Méditerranée @3 FRA @Z 1 aut. @Z 3 aut.
A15 02      @1 University of Nice @3 FRA @Z 2 aut.
A20       @1 158-173
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 17243 @5 354000175110240100
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 60 ref.
A47 01  1    @0 08-0241602
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Theoretical computer science
A66 01      @0 NLD
C01 01    ENG  @0 We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;B (d6 + d4τ2), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d3τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.
C02 01  X    @0 001D02A08
C02 02  X    @0 001A02G04
C02 03  X    @0 001A02C04
C02 04  X    @0 001D02A05
C03 01  X  FRE  @0 Complexité algorithme @5 17
C03 01  X  ENG  @0 Algorithm complexity @5 17
C03 01  X  SPA  @0 Complejidad algoritmo @5 17
C03 02  3  FRE  @0 Fraction continue @5 18
C03 02  3  ENG  @0 Continued fractions @5 18
C03 03  X  FRE  @0 Algorithmique @5 19
C03 03  X  ENG  @0 Algorithmics @5 19
C03 03  X  SPA  @0 Algorítmica @5 19
C03 04  X  FRE  @0 Implémentation @5 20
C03 04  X  ENG  @0 Implementation @5 20
C03 04  X  SPA  @0 Implementación @5 20
C03 05  X  FRE  @0 Nombre entier @5 21
C03 05  X  ENG  @0 Integer @5 21
C03 05  X  SPA  @0 Entero @5 21
C03 06  X  FRE  @0 Polynôme @5 22
C03 06  X  ENG  @0 Polynomial @5 22
C03 06  X  SPA  @0 Polinomio @5 22
C03 07  X  FRE  @0 Développement fraction continue @5 23
C03 07  X  ENG  @0 Continued fraction expansion @5 23
C03 07  X  SPA  @0 Desarrollo fracción continua @5 23
C03 08  X  FRE  @0 Expansion @5 24
C03 08  X  ENG  @0 Expansion @5 24
C03 08  X  SPA  @0 Expansión @5 24
C03 09  X  FRE  @0 Nombre réel @5 25
C03 09  X  ENG  @0 Real number @5 25
C03 09  X  SPA  @0 Número real @5 25
C03 10  X  FRE  @0 Nombre algébrique @5 26
C03 10  X  ENG  @0 Algebraic number @5 26
C03 10  X  SPA  @0 Número algebraico @5 26
C03 11  X  FRE  @0 Performance @5 27
C03 11  X  ENG  @0 Performance @5 27
C03 11  X  SPA  @0 Rendimiento @5 27
C03 12  X  FRE  @0 Multiplicité @5 28
C03 12  X  ENG  @0 Multiplicity @5 28
C03 12  X  SPA  @0 Multiplicidad @5 28
C03 13  X  FRE  @0 Algorithme @5 29
C03 13  X  ENG  @0 Algorithm @5 29
C03 13  X  SPA  @0 Algoritmo @5 29
C03 14  X  FRE  @0 Complétude @5 30
C03 14  X  ENG  @0 Completeness @5 30
C03 14  X  SPA  @0 Completitud @5 30
C03 15  X  FRE  @0 Efficacité @5 31
C03 15  X  ENG  @0 Efficiency @5 31
C03 15  X  SPA  @0 Eficacia @5 31
C03 16  X  FRE  @0 Logiciel @5 32
C03 16  X  ENG  @0 Software @5 32
C03 16  X  SPA  @0 Logicial @5 32
C03 17  X  FRE  @0 Informatique théorique @5 33
C03 17  X  ENG  @0 Computer theory @5 33
C03 17  X  SPA  @0 Informática teórica @5 33
C03 18  X  FRE  @0 58A25 @4 INC @5 70
C03 19  X  FRE  @0 Pire cas @4 INC @5 71
C03 20  X  FRE  @0 13H15 @4 INC @5 72
C03 21  X  FRE  @0 68Wxx @4 INC @5 73
C03 22  X  FRE  @0 68N01 @4 INC @5 74
N21       @1 154
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Computational Algebraic Geometry and Applications. Conference @3 Nice FRA @4 2006-06-02

Format Inist (serveur)

NO : PASCAL 08-0241602 INIST
ET : On the complexity of real root isolation using continued fractions
AU : TSIGARIDAS (Elias P.); EMIRIS (Ioannis Z.); BUSE (L.); ELKADI (M.); MOURRAIN (B.)
AF : INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101/54602 Villers-des-Nancy/France (1 aut.); Department of Informatics and Telecommunications, National Kapodistrian University of Athens/Hellas/Grèce (2 aut.); GALAAD, INRIA Sophia Antipolis-Méditerranée/France (1 aut., 3 aut.); University of Nice/France (2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Theoretical computer science; ISSN 0304-3975; Coden TCSCDI; Pays-Bas; Da. 2008; Vol. 392; No. 1-3; Pp. 158-173; Bibl. 60 ref.
LA : Anglais
EA : We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;B (d6 + d4τ2), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d3τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.
CC : 001D02A08; 001A02G04; 001A02C04; 001D02A05
FD : Complexité algorithme; Fraction continue; Algorithmique; Implémentation; Nombre entier; Polynôme; Développement fraction continue; Expansion; Nombre réel; Nombre algébrique; Performance; Multiplicité; Algorithme; Complétude; Efficacité; Logiciel; Informatique théorique; 58A25; Pire cas; 13H15; 68Wxx; 68N01
ED : Algorithm complexity; Continued fractions; Algorithmics; Implementation; Integer; Polynomial; Continued fraction expansion; Expansion; Real number; Algebraic number; Performance; Multiplicity; Algorithm; Completeness; Efficiency; Software; Computer theory
SD : Complejidad algoritmo; Algorítmica; Implementación; Entero; Polinomio; Desarrollo fracción continua; Expansión; Número real; Número algebraico; Rendimiento; Multiplicidad; Algoritmo; Completitud; Eficacia; Logicial; Informática teórica
LO : INIST-17243.354000175110240100
ID : 08-0241602

Links to Exploration step

Pascal:08-0241602

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the complexity of real root isolation using continued fractions</title>
<author>
<name sortKey="Tsigaridas, Elias P" sort="Tsigaridas, Elias P" uniqKey="Tsigaridas E" first="Elias P." last="Tsigaridas">Elias P. Tsigaridas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101</s1>
<s2>54602 Villers-des-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emiris, Ioannis Z" sort="Emiris, Ioannis Z" uniqKey="Emiris I" first="Ioannis Z." last="Emiris">Ioannis Z. Emiris</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Informatics and Telecommunications, National Kapodistrian University of Athens</s1>
<s2>Hellas</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0241602</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0241602 INIST</idno>
<idno type="RBID">Pascal:08-0241602</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000314</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the complexity of real root isolation using continued fractions</title>
<author>
<name sortKey="Tsigaridas, Elias P" sort="Tsigaridas, Elias P" uniqKey="Tsigaridas E" first="Elias P." last="Tsigaridas">Elias P. Tsigaridas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101</s1>
<s2>54602 Villers-des-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emiris, Ioannis Z" sort="Emiris, Ioannis Z" uniqKey="Emiris I" first="Ioannis Z." last="Emiris">Ioannis Z. Emiris</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Informatics and Telecommunications, National Kapodistrian University of Athens</s1>
<s2>Hellas</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebraic number</term>
<term>Algorithm</term>
<term>Algorithm complexity</term>
<term>Algorithmics</term>
<term>Completeness</term>
<term>Computer theory</term>
<term>Continued fraction expansion</term>
<term>Continued fractions</term>
<term>Efficiency</term>
<term>Expansion</term>
<term>Implementation</term>
<term>Integer</term>
<term>Multiplicity</term>
<term>Performance</term>
<term>Polynomial</term>
<term>Real number</term>
<term>Software</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Complexité algorithme</term>
<term>Fraction continue</term>
<term>Algorithmique</term>
<term>Implémentation</term>
<term>Nombre entier</term>
<term>Polynôme</term>
<term>Développement fraction continue</term>
<term>Expansion</term>
<term>Nombre réel</term>
<term>Nombre algébrique</term>
<term>Performance</term>
<term>Multiplicité</term>
<term>Algorithme</term>
<term>Complétude</term>
<term>Efficacité</term>
<term>Logiciel</term>
<term>Informatique théorique</term>
<term>58A25</term>
<term>Pire cas</term>
<term>13H15</term>
<term>68Wxx</term>
<term>68N01</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;
<sub>B</sub>
(d
<sup>6</sup>
+ d
<sup>4</sup>
τ
<sup>2</sup>
), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d
<sup>3</sup>
τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-3975</s0>
</fA01>
<fA02 i1="01">
<s0>TCSCDI</s0>
</fA02>
<fA03 i2="1">
<s0>Theor. comput. sci.</s0>
</fA03>
<fA05>
<s2>392</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the complexity of real root isolation using continued fractions</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Computational Algebraic Geometry and Applications</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TSIGARIDAS (Elias P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMIRIS (Ioannis Z.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BUSE (L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ELKADI (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MOURRAIN (B.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101</s1>
<s2>54602 Villers-des-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Informatics and Telecommunications, National Kapodistrian University of Athens</s1>
<s2>Hellas</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>GALAAD, INRIA Sophia Antipolis-Méditerranée</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Nice</s1>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>158-173</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17243</s2>
<s5>354000175110240100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0241602</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Theoretical computer science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;
<sub>B</sub>
(d
<sup>6</sup>
+ d
<sup>4</sup>
τ
<sup>2</sup>
), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d
<sup>3</sup>
τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A08</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02G04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001A02C04</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Complexité algorithme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Algorithm complexity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Complejidad algoritmo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Fraction continue</s0>
<s5>18</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Continued fractions</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Algorithmique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Algorithmics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Algorítmica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Implémentation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Implementation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Implementación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nombre entier</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Integer</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Entero</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Polynôme</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Polynomial</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Polinomio</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Développement fraction continue</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Continued fraction expansion</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Desarrollo fracción continua</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Expansion</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Expansion</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Expansión</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Nombre réel</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Real number</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Número real</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nombre algébrique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Algebraic number</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Número algebraico</s0>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Performance</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Performance</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Multiplicité</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Multiplicity</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Multiplicidad</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Complétude</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Completeness</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Completitud</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Efficacité</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Efficiency</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Eficacia</s0>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Logiciel</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Software</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Logicial</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Informatique théorique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Computer theory</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Informática teórica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>58A25</s0>
<s4>INC</s4>
<s5>70</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Pire cas</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>13H15</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>68Wxx</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>68N01</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>154</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Computational Algebraic Geometry and Applications. Conference</s1>
<s3>Nice FRA</s3>
<s4>2006-06-02</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 08-0241602 INIST</NO>
<ET>On the complexity of real root isolation using continued fractions</ET>
<AU>TSIGARIDAS (Elias P.); EMIRIS (Ioannis Z.); BUSE (L.); ELKADI (M.); MOURRAIN (B.)</AU>
<AF>INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101/54602 Villers-des-Nancy/France (1 aut.); Department of Informatics and Telecommunications, National Kapodistrian University of Athens/Hellas/Grèce (2 aut.); GALAAD, INRIA Sophia Antipolis-Méditerranée/France (1 aut., 3 aut.); University of Nice/France (2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Theoretical computer science; ISSN 0304-3975; Coden TCSCDI; Pays-Bas; Da. 2008; Vol. 392; No. 1-3; Pp. 158-173; Bibl. 60 ref.</SO>
<LA>Anglais</LA>
<EA>We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;
<sub>B</sub>
(d
<sup>6</sup>
+ d
<sup>4</sup>
τ
<sup>2</sup>
), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d
<sup>3</sup>
τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.</EA>
<CC>001D02A08; 001A02G04; 001A02C04; 001D02A05</CC>
<FD>Complexité algorithme; Fraction continue; Algorithmique; Implémentation; Nombre entier; Polynôme; Développement fraction continue; Expansion; Nombre réel; Nombre algébrique; Performance; Multiplicité; Algorithme; Complétude; Efficacité; Logiciel; Informatique théorique; 58A25; Pire cas; 13H15; 68Wxx; 68N01</FD>
<ED>Algorithm complexity; Continued fractions; Algorithmics; Implementation; Integer; Polynomial; Continued fraction expansion; Expansion; Real number; Algebraic number; Performance; Multiplicity; Algorithm; Completeness; Efficiency; Software; Computer theory</ED>
<SD>Complejidad algoritmo; Algorítmica; Implementación; Entero; Polinomio; Desarrollo fracción continua; Expansión; Número real; Número algebraico; Rendimiento; Multiplicidad; Algoritmo; Completitud; Eficacia; Logicial; Informática teórica</SD>
<LO>INIST-17243.354000175110240100</LO>
<ID>08-0241602</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000314 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000314 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0241602
   |texte=   On the complexity of real root isolation using continued fractions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022