Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Finite-dimensional calculus

Identifieur interne : 000260 ( PascalFrancis/Corpus ); précédent : 000259; suivant : 000261

Finite-dimensional calculus

Auteurs : Philip Feinsilver ; René Schott

Source :

RBID : Pascal:09-0393015

Descripteurs français

English descriptors

Abstract

We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1751-8113
A03   1    @0 J. phys., A, math. theor. : (Print)
A05       @2 42
A06       @2 37
A08 01  1  ENG  @1 Finite-dimensional calculus
A11 01  1    @1 FEINSILVER (Philip)
A11 02  1    @1 SCHOTT (René)
A14 01      @1 Department of Mathematics, Southern Illinois University @2 Carbondale, IL 62901 @3 USA @Z 1 aut.
A14 02      @1 IECN and LORIA, Université Henri Poincaré-Nancy 1, BP 239 @2 54506 Vandoeuvre-lès-Nancy @3 FRA @Z 2 aut.
A20       @2 375214.1-375214.16
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 577C @5 354000171067180190
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 09-0393015
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of physics. A, Mathematical and theoretical : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
C02 01  3    @0 001B00
C03 01  3  FRE  @0 Mécanique quantique @5 26
C03 01  3  ENG  @0 Quantum mechanics @5 26
C03 02  X  FRE  @0 Représentation analytique @5 27
C03 02  X  ENG  @0 Analytic representation @5 27
C03 02  X  SPA  @0 Representación analítica @5 27
C03 03  X  FRE  @0 Opérateur @5 28
C03 03  X  ENG  @0 Operator @5 28
C03 03  X  SPA  @0 Operador @5 28
N21       @1 285
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0393015 INIST
ET : Finite-dimensional calculus
AU : FEINSILVER (Philip); SCHOTT (René)
AF : Department of Mathematics, Southern Illinois University/Carbondale, IL 62901/Etats-Unis (1 aut.); IECN and LORIA, Université Henri Poincaré-Nancy 1, BP 239/54506 Vandoeuvre-lès-Nancy/France (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of physics. A, Mathematical and theoretical : (Print); ISSN 1751-8113; Royaume-Uni; Da. 2009; Vol. 42; No. 37; 375214.1-375214.16; Bibl. 17 ref.
LA : Anglais
EA : We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
CC : 001B00
FD : Mécanique quantique; Représentation analytique; Opérateur
ED : Quantum mechanics; Analytic representation; Operator
SD : Representación analítica; Operador
LO : INIST-577C.354000171067180190
ID : 09-0393015

Links to Exploration step

Pascal:09-0393015

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Finite-dimensional calculus</title>
<author>
<name sortKey="Feinsilver, Philip" sort="Feinsilver, Philip" uniqKey="Feinsilver P" first="Philip" last="Feinsilver">Philip Feinsilver</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mathematics, Southern Illinois University</s1>
<s2>Carbondale, IL 62901</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schott, Rene" sort="Schott, Rene" uniqKey="Schott R" first="René" last="Schott">René Schott</name>
<affiliation>
<inist:fA14 i1="02">
<s1>IECN and LORIA, Université Henri Poincaré-Nancy 1, BP 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0393015</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0393015 INIST</idno>
<idno type="RBID">Pascal:09-0393015</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000260</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Finite-dimensional calculus</title>
<author>
<name sortKey="Feinsilver, Philip" sort="Feinsilver, Philip" uniqKey="Feinsilver P" first="Philip" last="Feinsilver">Philip Feinsilver</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mathematics, Southern Illinois University</s1>
<s2>Carbondale, IL 62901</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schott, Rene" sort="Schott, Rene" uniqKey="Schott R" first="René" last="Schott">René Schott</name>
<affiliation>
<inist:fA14 i1="02">
<s1>IECN and LORIA, Université Henri Poincaré-Nancy 1, BP 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. A, Mathematical and theoretical : (Print)</title>
<title level="j" type="abbreviated">J. phys., A, math. theor. : (Print)</title>
<idno type="ISSN">1751-8113</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. A, Mathematical and theoretical : (Print)</title>
<title level="j" type="abbreviated">J. phys., A, math. theor. : (Print)</title>
<idno type="ISSN">1751-8113</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytic representation</term>
<term>Operator</term>
<term>Quantum mechanics</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanique quantique</term>
<term>Représentation analytique</term>
<term>Opérateur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1751-8113</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys., A, math. theor. : (Print)</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>37</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Finite-dimensional calculus</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FEINSILVER (Philip)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHOTT (René)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mathematics, Southern Illinois University</s1>
<s2>Carbondale, IL 62901</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>IECN and LORIA, Université Henri Poincaré-Nancy 1, BP 239</s1>
<s2>54506 Vandoeuvre-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>375214.1-375214.16</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577C</s2>
<s5>354000171067180190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0393015</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. A, Mathematical and theoretical : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Mécanique quantique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum mechanics</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Représentation analytique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Analytic representation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Representación analítica</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Opérateur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Operator</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Operador</s0>
<s5>28</s5>
</fC03>
<fN21>
<s1>285</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0393015 INIST</NO>
<ET>Finite-dimensional calculus</ET>
<AU>FEINSILVER (Philip); SCHOTT (René)</AU>
<AF>Department of Mathematics, Southern Illinois University/Carbondale, IL 62901/Etats-Unis (1 aut.); IECN and LORIA, Université Henri Poincaré-Nancy 1, BP 239/54506 Vandoeuvre-lès-Nancy/France (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of physics. A, Mathematical and theoretical : (Print); ISSN 1751-8113; Royaume-Uni; Da. 2009; Vol. 42; No. 37; 375214.1-375214.16; Bibl. 17 ref.</SO>
<LA>Anglais</LA>
<EA>We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.</EA>
<CC>001B00</CC>
<FD>Mécanique quantique; Représentation analytique; Opérateur</FD>
<ED>Quantum mechanics; Analytic representation; Operator</ED>
<SD>Representación analítica; Operador</SD>
<LO>INIST-577C.354000171067180190</LO>
<ID>09-0393015</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000260 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000260 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0393015
   |texte=   Finite-dimensional calculus
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022