Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the complexity of real root isolation using continued fractions

Identifieur interne : 000271 ( PascalFrancis/Checkpoint ); précédent : 000270; suivant : 000272

On the complexity of real root isolation using continued fractions

Auteurs : Elias P. Tsigaridas [France] ; Ioannis Z. Emiris [Grèce]

Source :

RBID : Pascal:08-0241602

Descripteurs français

English descriptors

Abstract

We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;B (d6 + d4τ2), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d3τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0241602

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the complexity of real root isolation using continued fractions</title>
<author>
<name sortKey="Tsigaridas, Elias P" sort="Tsigaridas, Elias P" uniqKey="Tsigaridas E" first="Elias P." last="Tsigaridas">Elias P. Tsigaridas</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101</s1>
<s2>54602 Villers-des-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-des-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Emiris, Ioannis Z" sort="Emiris, Ioannis Z" uniqKey="Emiris I" first="Ioannis Z." last="Emiris">Ioannis Z. Emiris</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Informatics and Telecommunications, National Kapodistrian University of Athens</s1>
<s2>Hellas</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>Hellas</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0241602</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0241602 INIST</idno>
<idno type="RBID">Pascal:08-0241602</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000314</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000714</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000271</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000271</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">On the complexity of real root isolation using continued fractions</title>
<author>
<name sortKey="Tsigaridas, Elias P" sort="Tsigaridas, Elias P" uniqKey="Tsigaridas E" first="Elias P." last="Tsigaridas">Elias P. Tsigaridas</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101</s1>
<s2>54602 Villers-des-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-des-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Emiris, Ioannis Z" sort="Emiris, Ioannis Z" uniqKey="Emiris I" first="Ioannis Z." last="Emiris">Ioannis Z. Emiris</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Informatics and Telecommunications, National Kapodistrian University of Athens</s1>
<s2>Hellas</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>Hellas</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Theoretical computer science</title>
<title level="j" type="abbreviated">Theor. comput. sci.</title>
<idno type="ISSN">0304-3975</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algebraic number</term>
<term>Algorithm</term>
<term>Algorithm complexity</term>
<term>Algorithmics</term>
<term>Completeness</term>
<term>Computer theory</term>
<term>Continued fraction expansion</term>
<term>Continued fractions</term>
<term>Efficiency</term>
<term>Expansion</term>
<term>Implementation</term>
<term>Integer</term>
<term>Multiplicity</term>
<term>Performance</term>
<term>Polynomial</term>
<term>Real number</term>
<term>Software</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Complexité algorithme</term>
<term>Fraction continue</term>
<term>Algorithmique</term>
<term>Implémentation</term>
<term>Nombre entier</term>
<term>Polynôme</term>
<term>Développement fraction continue</term>
<term>Expansion</term>
<term>Nombre réel</term>
<term>Nombre algébrique</term>
<term>Performance</term>
<term>Multiplicité</term>
<term>Algorithme</term>
<term>Complétude</term>
<term>Efficacité</term>
<term>Logiciel</term>
<term>Informatique théorique</term>
<term>58A25</term>
<term>Pire cas</term>
<term>13H15</term>
<term>68Wxx</term>
<term>68N01</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Logiciel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;
<sub>B</sub>
(d
<sup>6</sup>
+ d
<sup>4</sup>
τ
<sup>2</sup>
), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d
<sup>3</sup>
τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-3975</s0>
</fA01>
<fA02 i1="01">
<s0>TCSCDI</s0>
</fA02>
<fA03 i2="1">
<s0>Theor. comput. sci.</s0>
</fA03>
<fA05>
<s2>392</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the complexity of real root isolation using continued fractions</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Computational Algebraic Geometry and Applications</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>TSIGARIDAS (Elias P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMIRIS (Ioannis Z.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BUSE (L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ELKADI (M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MOURRAIN (B.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>INRIA -LORIA Lorraine, project VEGAS, 615, rue du Jardin Botanique, B.P. 101</s1>
<s2>54602 Villers-des-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Informatics and Telecommunications, National Kapodistrian University of Athens</s1>
<s2>Hellas</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>GALAAD, INRIA Sophia Antipolis-Méditerranée</s1>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Nice</s1>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>158-173</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17243</s2>
<s5>354000175110240100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0241602</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Theoretical computer science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real algebraic numbers. One motivation is to explain the method's good performance in practice. We derive an expected complexity bound of ========Otilde;
<sub>B</sub>
(d
<sup>6</sup>
+ d
<sup>4</sup>
τ
<sup>2</sup>
), where d is the polynomial degree and τ bounds the coefficient bit size, using a standard bound on the expected bit size of the integers in the continued fraction expansion, thus matching the current worst-case complexity bound for real root isolation by exact methods (Sturm, Descartes and Bernstein subdivision). Moreover, using a homothetic transformation we improve the expected complexity bound to OB (d
<sup>3</sup>
τ). We compute the multiplicities within the same complexity and extend the algorithm to non-square-free polynomials. Finally, we present an open-source C++ implementation in the algebraic library SYNAPS, and illustrate its completeness and efficiency as compared to some other available software. For this we use polynomials with coefficient bit size up to 8000 bits and degree up to 1000.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A08</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02G04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001A02C04</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Complexité algorithme</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Algorithm complexity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Complejidad algoritmo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Fraction continue</s0>
<s5>18</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Continued fractions</s0>
<s5>18</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Algorithmique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Algorithmics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Algorítmica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Implémentation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Implementation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Implementación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nombre entier</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Integer</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Entero</s0>
<s5>21</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Polynôme</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Polynomial</s0>
<s5>22</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Polinomio</s0>
<s5>22</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Développement fraction continue</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Continued fraction expansion</s0>
<s5>23</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Desarrollo fracción continua</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Expansion</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Expansion</s0>
<s5>24</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Expansión</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Nombre réel</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Real number</s0>
<s5>25</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Número real</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nombre algébrique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Algebraic number</s0>
<s5>26</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Número algebraico</s0>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Performance</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Performance</s0>
<s5>27</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Multiplicité</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Multiplicity</s0>
<s5>28</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Multiplicidad</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Algorithme</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Algorithm</s0>
<s5>29</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Algoritmo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Complétude</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Completeness</s0>
<s5>30</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Completitud</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Efficacité</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Efficiency</s0>
<s5>31</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Eficacia</s0>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Logiciel</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Software</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Logicial</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Informatique théorique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Computer theory</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Informática teórica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>58A25</s0>
<s4>INC</s4>
<s5>70</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Pire cas</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>13H15</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>68Wxx</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>68N01</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>154</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Computational Algebraic Geometry and Applications. Conference</s1>
<s3>Nice FRA</s3>
<s4>2006-06-02</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>France</li>
<li>Grèce</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Villers-des-Nancy</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Tsigaridas, Elias P" sort="Tsigaridas, Elias P" uniqKey="Tsigaridas E" first="Elias P." last="Tsigaridas">Elias P. Tsigaridas</name>
</region>
</country>
<country name="Grèce">
<noRegion>
<name sortKey="Emiris, Ioannis Z" sort="Emiris, Ioannis Z" uniqKey="Emiris I" first="Ioannis Z." last="Emiris">Ioannis Z. Emiris</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000271 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000271 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:08-0241602
   |texte=   On the complexity of real root isolation using continued fractions
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022