Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening

Identifieur interne : 000118 ( PascalFrancis/Checkpoint ); précédent : 000117; suivant : 000119

Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening

Auteurs : Violeta I. Perez-Nueno [France] ; David W. Ritchie [France]

Source :

RBID : Pascal:11-0332166

Descripteurs français

English descriptors

Abstract

Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0332166

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening</title>
<author>
<name sortKey="Perez Nueno, Violeta I" sort="Perez Nueno, Violeta I" uniqKey="Perez Nueno V" first="Violeta I." last="Perez-Nueno">Violeta I. Perez-Nueno</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ritchie, David W" sort="Ritchie, David W" uniqKey="Ritchie D" first="David W." last="Ritchie">David W. Ritchie</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0332166</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0332166 INIST</idno>
<idno type="RBID">Pascal:11-0332166</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000141</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000872</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000118</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000118</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening</title>
<author>
<name sortKey="Perez Nueno, Violeta I" sort="Perez Nueno, Violeta I" uniqKey="Perez Nueno V" first="Violeta I." last="Perez-Nueno">Violeta I. Perez-Nueno</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ritchie, David W" sort="Ritchie, David W" uniqKey="Ritchie D" first="David W." last="Ritchie">David W. Ritchie</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of chemical information and modeling</title>
<title level="j" type="abbreviated">J. chem. inf. model. </title>
<idno type="ISSN">1549-9596</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of chemical information and modeling</title>
<title level="j" type="abbreviated">J. chem. inf. model. </title>
<idno type="ISSN">1549-9596</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster analysis</term>
<term>Computational chemistry</term>
<term>Conformation</term>
<term>Consolidation</term>
<term>Data analysis</term>
<term>Distributed system</term>
<term>Drug</term>
<term>Edge effect</term>
<term>Image processing</term>
<term>Ligand</term>
<term>Multiple target</term>
<term>Object recognition</term>
<term>Pattern matching</term>
<term>Pharmaceutical industry</term>
<term>Probabilistic approach</term>
<term>Protein</term>
<term>Spherical harmonic</term>
<term>Spherical shape</term>
<term>Statistical analysis</term>
<term>Strain control</term>
<term>Virtual screening</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse donnée</term>
<term>Chimie informatique</term>
<term>Concordance forme</term>
<term>Traitement image</term>
<term>Système réparti</term>
<term>Consolidation</term>
<term>Ligand</term>
<term>Protéine</term>
<term>Industrie pharmaceutique</term>
<term>Cible multiple</term>
<term>Analyse amas</term>
<term>Médicament</term>
<term>Effet bord</term>
<term>Harmonique sphérique</term>
<term>Criblage virtuel</term>
<term>Conformation</term>
<term>Analyse statistique</term>
<term>Approche probabiliste</term>
<term>Forme sphérique</term>
<term>.</term>
<term>Contrôle déformation mécanique</term>
<term>Reconnaissance objet</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Industrie pharmaceutique</term>
<term>Médicament</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1549-9596</s0>
</fA01>
<fA03 i2="1">
<s0>J. chem. inf. model. </s0>
</fA03>
<fA05>
<s2>51</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PEREZ-NUENO (Violeta I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RITCHIE (David W.)</s1>
</fA11>
<fA14 i1="01">
<s1>INRIA Nancy, LORIA, 615 rue du Jardin Botanique</s1>
<s2>54600 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1233-1248</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2652</s2>
<s5>354000190503440040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0332166</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of chemical information and modeling</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Ligand-based shape matching approaches have become established as important and popular virtual screening (VS) techniques. However, despite their relative success, many authors have discussed how best to choose the initial query compounds and which of their conformations should be used. Furthermore, it is increasingly the case that pharmaceutical companies have multiple ligands for a given target and these may bind in different ways to the same pocket. Conversely, a given ligand can sometimes bind to multiple targets, and this is clearly of great importance when considering drug side-effects. We recently introduced the notion of spherical harmonic-based "consensus shapes" to help deal with these questions. Here, we apply a consensus shape clustering approach to the 40 protein-ligand targets in the DUD data set using PARASURF/PARAFIT. Results from clustering show that in some cases the ligands for a given target are split into two subgroups which could suggest they bind to different subsites of the same target. In other cases, our clustering approach sometimes groups together ligands from different targets, and this suggests that those ligands could bind to the same targets. Hence spherical harmonic-based clustering can rapidly give cross-docking information while avoiding the expense of performing all-against-all docking calculations. We also report on the effect of the query conformation on the performance of shape-based screening of the DUD data set and the potential gain in screening performance by using consensus shapes calculated in different ways. We provide details of our analysis of shape-based screening using both PARASURF/PARAFIT and ROCS, and we compare the results obtained with shape-based and conventional docking approaches using MSSH/SHEF and GOLD. The utility of each type of query is analyzed using commonly reported statistics such as enrichment factors (EF) and receiver-operator-characteristic (ROC) plots as well as other early performance metrics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B07B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01A01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B02A03</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Analyse donnée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Data analysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Análisis datos</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Chimie informatique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Computational chemistry</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Química informática</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Concordance forme</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Pattern matching</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Traitement image</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Image processing</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Procesamiento imagen</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Système réparti</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Distributed system</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Sistema repartido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Consolidation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Consolidation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Consolidación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Ligand</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Ligand</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ligando</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Protein</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Industrie pharmaceutique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Pharmaceutical industry</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Industria farmacéutica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cible multiple</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Multiple target</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Blanco múltiple</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Analyse amas</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cluster analysis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Analisis cluster</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Médicament</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Drug</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Medicamento</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Effet bord</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Edge effect</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Efecto borde</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Harmonique sphérique</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Spherical harmonic</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Armónica esférica</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Criblage virtuel</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Virtual screening</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cribado virtual</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Conformation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Conformation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Conformación</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Analyse statistique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Statistical analysis</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Análisis estadístico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Approche probabiliste</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Probabilistic approach</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Enfoque probabilista</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Forme sphérique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Spherical shape</s0>
<s5>41</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Forma esférica</s0>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Contrôle déformation mécanique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Strain control</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Control de deformación mecánica</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Reconnaissance objet</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Object recognition</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Reconocimiento de objetos</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>227</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Villers-lès-Nancy</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Perez Nueno, Violeta I" sort="Perez Nueno, Violeta I" uniqKey="Perez Nueno V" first="Violeta I." last="Perez-Nueno">Violeta I. Perez-Nueno</name>
</region>
<name sortKey="Ritchie, David W" sort="Ritchie, David W" uniqKey="Ritchie D" first="David W." last="Ritchie">David W. Ritchie</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000118 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000118 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:11-0332166
   |texte=   Using Consensus-Shape Clustering To Identify Promiscuous Ligands and Protein Targets and To Choose the Right Query for Shape-Based Virtual Screening
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022