Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Graphite intercalation compounds as anionic polymerization initiators

Identifieur interne : 00ED30 ( Main/Curation ); précédent : 00ED29; suivant : 00ED31

Graphite intercalation compounds as anionic polymerization initiators

Auteurs : J. Gole [France] ; G. Merle [France] ; J. P. Pascault [France]

Source :

RBID : ISTEX:279A545D569B16516A5258451CA0293BF74867CF

English descriptors

Abstract

Abstract: The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.Using kinetic observations (polymerization of styrene and isoprene initiated by LiC12, or of ethylene oxide by KC24, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators: •-protection of the live end which can show high tacticity and slow down some secondary reactions;•-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;•-a configuration of a given monomer for a stereospecific homopolymerization.Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.

Url:
DOI: 10.1016/0379-6779(82)90001-7

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:279A545D569B16516A5258451CA0293BF74867CF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Graphite intercalation compounds as anionic polymerization initiators</title>
<author>
<name sortKey="Gole, J" sort="Gole, J" uniqKey="Gole J" first="J." last="Gole">J. Gole</name>
</author>
<author>
<name sortKey="Merle, G" sort="Merle, G" uniqKey="Merle G" first="G." last="Merle">G. Merle</name>
</author>
<author>
<name sortKey="Pascault, J P" sort="Pascault, J P" uniqKey="Pascault J" first="J. P." last="Pascault">J. P. Pascault</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:279A545D569B16516A5258451CA0293BF74867CF</idno>
<date when="1982" year="1982">1982</date>
<idno type="doi">10.1016/0379-6779(82)90001-7</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-6MBH95MW-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000909</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000909</idno>
<idno type="wicri:Area/Istex/Curation">000904</idno>
<idno type="wicri:Area/Istex/Checkpoint">003848</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">003848</idno>
<idno type="wicri:doubleKey">0379-6779:1982:Gole J:graphite:intercalation:compounds</idno>
<idno type="wicri:Area/Main/Merge">00F620</idno>
<idno type="wicri:Area/Main/Curation">00ED30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Graphite intercalation compounds as anionic polymerization initiators</title>
<author>
<name sortKey="Gole, J" sort="Gole, J" uniqKey="Gole J" first="J." last="Gole">J. Gole</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403</wicri:regionArea>
<wicri:noRegion>Bâtiment 403</wicri:noRegion>
<wicri:noRegion>Bâtiment 403</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>National des Sciences Appliquées</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Merle, G" sort="Merle, G" uniqKey="Merle G" first="G." last="Merle">G. Merle</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403</wicri:regionArea>
<wicri:noRegion>Bâtiment 403</wicri:noRegion>
<wicri:noRegion>Bâtiment 403</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>National des Sciences Appliquées</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pascault, J P" sort="Pascault, J P" uniqKey="Pascault J" first="J. P." last="Pascault">J. P. Pascault</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403</wicri:regionArea>
<wicri:noRegion>Bâtiment 403</wicri:noRegion>
<wicri:noRegion>Bâtiment 403</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>National des Sciences Appliquées</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Synthetic Metals</title>
<title level="j" type="abbrev">SYNMET</title>
<idno type="ISSN">0379-6779</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1982">1982</date>
<biblScope unit="volume">4</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="269">269</biblScope>
<biblScope unit="page" to="297">297</biblScope>
</imprint>
<idno type="ISSN">0379-6779</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0379-6779</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Active centers</term>
<term>Active centres</term>
<term>Alkali graphitides</term>
<term>Alkali metals</term>
<term>Alkyl amines</term>
<term>Amine</term>
<term>Anionic polymerization</term>
<term>Anionic polymerizations</term>
<term>Bulk polymerization</term>
<term>Catalyst efficiency</term>
<term>Cation</term>
<term>Cationic polymerization</term>
<term>Ceylon</term>
<term>Chem</term>
<term>Chemical properties</term>
<term>Complexing</term>
<term>Complexing agent</term>
<term>Complexing agents</term>
<term>Complexing molecule</term>
<term>Copolymer</term>
<term>Copolymerization</term>
<term>Crystalline lattice</term>
<term>Cyclohexane</term>
<term>Diene monomers</term>
<term>Different temperatures</term>
<term>Diffusion phenomena</term>
<term>Diffusion rate</term>
<term>Ethylene</term>
<term>Ethylene oxide</term>
<term>Ethylene oxide polymerization</term>
<term>Experimental data</term>
<term>First stage</term>
<term>Free ions</term>
<term>Good initiators</term>
<term>Graphite</term>
<term>Graphite intercalation</term>
<term>Graphite layer</term>
<term>Graphite layers</term>
<term>Graphite layers increases</term>
<term>Graphite planes</term>
<term>Graphitide</term>
<term>Graphitides</term>
<term>Heterogeneous mechanism</term>
<term>High content</term>
<term>High initiator efficiency</term>
<term>High yields</term>
<term>Homogeneous conditions</term>
<term>Homogeneous media</term>
<term>Homogeneous medium</term>
<term>Homogeneous polymerization</term>
<term>Hydrocarbon solvents</term>
<term>Initiation step</term>
<term>Initiator</term>
<term>Initiator efficiency</term>
<term>Insertion</term>
<term>Intercalation</term>
<term>Intercalation compounds</term>
<term>Interesting results</term>
<term>Interlayer</term>
<term>Interlayer space</term>
<term>Interlayer spacing</term>
<term>Isoprene</term>
<term>Isoprene ceylon</term>
<term>Isoprene madagascar</term>
<term>Isoprene polymerization</term>
<term>Kinetic study</term>
<term>Lamellar</term>
<term>Lamellar compound</term>
<term>Lamellar compounds</term>
<term>Large number</term>
<term>Layer</term>
<term>Lithium</term>
<term>Lithium graphitides</term>
<term>Macromolecular chains</term>
<term>Macromolecule</term>
<term>Madagascar</term>
<term>Madagascar graphite</term>
<term>Merle</term>
<term>Microstructure</term>
<term>Microstructures</term>
<term>Molecular weight</term>
<term>Molecular weights</term>
<term>Monomer</term>
<term>Other hand</term>
<term>Oxide</term>
<term>Panayotov</term>
<term>Pascault</term>
<term>Pham</term>
<term>Polar solvents</term>
<term>Polyisoprene microstructures</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymerization</term>
<term>Polymerization proceeds</term>
<term>Polymerization rate</term>
<term>Polymerization time</term>
<term>Propagation rate</term>
<term>Rapid stage</term>
<term>Rashkov</term>
<term>Reaction rate</term>
<term>Reaction temperature</term>
<term>Reaction time</term>
<term>Room temperature</term>
<term>Secondary reactions</term>
<term>Slow stage</term>
<term>Solvent</term>
<term>Specific copolymerization</term>
<term>Stereospecific homopolymerization</term>
<term>Straight line</term>
<term>Strong interaction</term>
<term>Strong interactions</term>
<term>Styrene</term>
<term>Styrene ceylon</term>
<term>Styrene content</term>
<term>Synthetic metals</term>
<term>Tacticity</term>
<term>Temperature increases</term>
<term>Termination reaction</term>
<term>Ternary</term>
<term>Tetrahydrofuran</term>
<term>Thermal agitation</term>
<term>Trans</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.Using kinetic observations (polymerization of styrene and isoprene initiated by LiC12, or of ethylene oxide by KC24, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators: •-protection of the live end which can show high tacticity and slow down some secondary reactions;•-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;•-a configuration of a given monomer for a stereospecific homopolymerization.Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00ED30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 00ED30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:279A545D569B16516A5258451CA0293BF74867CF
   |texte=   Graphite intercalation compounds as anionic polymerization initiators
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022