Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Graphite intercalation compounds as anionic polymerization initiators

Identifieur interne : 000909 ( Istex/Corpus ); précédent : 000908; suivant : 000910

Graphite intercalation compounds as anionic polymerization initiators

Auteurs : J. Gole ; G. Merle ; J. P. Pascault

Source :

RBID : ISTEX:279A545D569B16516A5258451CA0293BF74867CF

English descriptors

Abstract

Abstract: The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.Using kinetic observations (polymerization of styrene and isoprene initiated by LiC12, or of ethylene oxide by KC24, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators: •-protection of the live end which can show high tacticity and slow down some secondary reactions;•-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;•-a configuration of a given monomer for a stereospecific homopolymerization.Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.

Url:
DOI: 10.1016/0379-6779(82)90001-7

Links to Exploration step

ISTEX:279A545D569B16516A5258451CA0293BF74867CF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Graphite intercalation compounds as anionic polymerization initiators</title>
<author>
<name sortKey="Gole, J" sort="Gole, J" uniqKey="Gole J" first="J." last="Gole">J. Gole</name>
<affiliation>
<mods:affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merle, G" sort="Merle, G" uniqKey="Merle G" first="G." last="Merle">G. Merle</name>
<affiliation>
<mods:affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pascault, J P" sort="Pascault, J P" uniqKey="Pascault J" first="J. P." last="Pascault">J. P. Pascault</name>
<affiliation>
<mods:affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:279A545D569B16516A5258451CA0293BF74867CF</idno>
<date when="1982" year="1982">1982</date>
<idno type="doi">10.1016/0379-6779(82)90001-7</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-6MBH95MW-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000909</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000909</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Graphite intercalation compounds as anionic polymerization initiators</title>
<author>
<name sortKey="Gole, J" sort="Gole, J" uniqKey="Gole J" first="J." last="Gole">J. Gole</name>
<affiliation>
<mods:affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Merle, G" sort="Merle, G" uniqKey="Merle G" first="G." last="Merle">G. Merle</name>
<affiliation>
<mods:affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pascault, J P" sort="Pascault, J P" uniqKey="Pascault J" first="J. P." last="Pascault">J. P. Pascault</name>
<affiliation>
<mods:affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Synthetic Metals</title>
<title level="j" type="abbrev">SYNMET</title>
<idno type="ISSN">0379-6779</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1982">1982</date>
<biblScope unit="volume">4</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="269">269</biblScope>
<biblScope unit="page" to="297">297</biblScope>
</imprint>
<idno type="ISSN">0379-6779</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0379-6779</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Active centers</term>
<term>Active centres</term>
<term>Alkali graphitides</term>
<term>Alkali metals</term>
<term>Alkyl amines</term>
<term>Amine</term>
<term>Anionic polymerization</term>
<term>Anionic polymerizations</term>
<term>Bulk polymerization</term>
<term>Catalyst efficiency</term>
<term>Cation</term>
<term>Cationic polymerization</term>
<term>Ceylon</term>
<term>Chem</term>
<term>Chemical properties</term>
<term>Complexing</term>
<term>Complexing agent</term>
<term>Complexing agents</term>
<term>Complexing molecule</term>
<term>Copolymer</term>
<term>Copolymerization</term>
<term>Crystalline lattice</term>
<term>Cyclohexane</term>
<term>Diene monomers</term>
<term>Different temperatures</term>
<term>Diffusion phenomena</term>
<term>Diffusion rate</term>
<term>Ethylene</term>
<term>Ethylene oxide</term>
<term>Ethylene oxide polymerization</term>
<term>Experimental data</term>
<term>First stage</term>
<term>Free ions</term>
<term>Good initiators</term>
<term>Graphite</term>
<term>Graphite intercalation</term>
<term>Graphite layer</term>
<term>Graphite layers</term>
<term>Graphite layers increases</term>
<term>Graphite planes</term>
<term>Graphitide</term>
<term>Graphitides</term>
<term>Heterogeneous mechanism</term>
<term>High content</term>
<term>High initiator efficiency</term>
<term>High yields</term>
<term>Homogeneous conditions</term>
<term>Homogeneous media</term>
<term>Homogeneous medium</term>
<term>Homogeneous polymerization</term>
<term>Hydrocarbon solvents</term>
<term>Initiation step</term>
<term>Initiator</term>
<term>Initiator efficiency</term>
<term>Insertion</term>
<term>Intercalation</term>
<term>Intercalation compounds</term>
<term>Interesting results</term>
<term>Interlayer</term>
<term>Interlayer space</term>
<term>Interlayer spacing</term>
<term>Isoprene</term>
<term>Isoprene ceylon</term>
<term>Isoprene madagascar</term>
<term>Isoprene polymerization</term>
<term>Kinetic study</term>
<term>Lamellar</term>
<term>Lamellar compound</term>
<term>Lamellar compounds</term>
<term>Large number</term>
<term>Layer</term>
<term>Lithium</term>
<term>Lithium graphitides</term>
<term>Macromolecular chains</term>
<term>Macromolecule</term>
<term>Madagascar</term>
<term>Madagascar graphite</term>
<term>Merle</term>
<term>Microstructure</term>
<term>Microstructures</term>
<term>Molecular weight</term>
<term>Molecular weights</term>
<term>Monomer</term>
<term>Other hand</term>
<term>Oxide</term>
<term>Panayotov</term>
<term>Pascault</term>
<term>Pham</term>
<term>Polar solvents</term>
<term>Polyisoprene microstructures</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymerization</term>
<term>Polymerization proceeds</term>
<term>Polymerization rate</term>
<term>Polymerization time</term>
<term>Propagation rate</term>
<term>Rapid stage</term>
<term>Rashkov</term>
<term>Reaction rate</term>
<term>Reaction temperature</term>
<term>Reaction time</term>
<term>Room temperature</term>
<term>Secondary reactions</term>
<term>Slow stage</term>
<term>Solvent</term>
<term>Specific copolymerization</term>
<term>Stereospecific homopolymerization</term>
<term>Straight line</term>
<term>Strong interaction</term>
<term>Strong interactions</term>
<term>Styrene</term>
<term>Styrene ceylon</term>
<term>Styrene content</term>
<term>Synthetic metals</term>
<term>Tacticity</term>
<term>Temperature increases</term>
<term>Termination reaction</term>
<term>Ternary</term>
<term>Tetrahydrofuran</term>
<term>Thermal agitation</term>
<term>Trans</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.Using kinetic observations (polymerization of styrene and isoprene initiated by LiC12, or of ethylene oxide by KC24, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators: •-protection of the live end which can show high tacticity and slow down some secondary reactions;•-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;•-a configuration of a given monomer for a stereospecific homopolymerization.Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>isoprene</json:string>
<json:string>graphite layers</json:string>
<json:string>trans</json:string>
<json:string>graphitides</json:string>
<json:string>polymer</json:string>
<json:string>cyclohexane</json:string>
<json:string>rashkov</json:string>
<json:string>polym</json:string>
<json:string>chem</json:string>
<json:string>lamellar</json:string>
<json:string>microstructure</json:string>
<json:string>homogeneous media</json:string>
<json:string>graphitide</json:string>
<json:string>panayotov</json:string>
<json:string>ethylene</json:string>
<json:string>ternary</json:string>
<json:string>microstructures</json:string>
<json:string>cation</json:string>
<json:string>intercalation</json:string>
<json:string>tacticity</json:string>
<json:string>copolymer</json:string>
<json:string>initiator</json:string>
<json:string>anionic polymerization</json:string>
<json:string>madagascar</json:string>
<json:string>graphite</json:string>
<json:string>pham</json:string>
<json:string>pascault</json:string>
<json:string>alkali metals</json:string>
<json:string>complexing</json:string>
<json:string>copolymerization</json:string>
<json:string>lithium</json:string>
<json:string>polymerization</json:string>
<json:string>monomer</json:string>
<json:string>amine</json:string>
<json:string>ethylene oxide</json:string>
<json:string>tetrahydrofuran</json:string>
<json:string>macromolecule</json:string>
<json:string>initiator efficiency</json:string>
<json:string>crystalline lattice</json:string>
<json:string>lamellar compounds</json:string>
<json:string>interlayer spacing</json:string>
<json:string>propagation rate</json:string>
<json:string>merle</json:string>
<json:string>other hand</json:string>
<json:string>polymerization time</json:string>
<json:string>different temperatures</json:string>
<json:string>active centres</json:string>
<json:string>reaction time</json:string>
<json:string>molecular weights</json:string>
<json:string>homogeneous polymerization</json:string>
<json:string>graphite layer</json:string>
<json:string>homogeneous medium</json:string>
<json:string>polymerization rate</json:string>
<json:string>bulk polymerization</json:string>
<json:string>rapid stage</json:string>
<json:string>insertion</json:string>
<json:string>styrene</json:string>
<json:string>room temperature</json:string>
<json:string>slow stage</json:string>
<json:string>styrene ceylon</json:string>
<json:string>initiation step</json:string>
<json:string>cationic polymerization</json:string>
<json:string>isoprene madagascar</json:string>
<json:string>alkyl amines</json:string>
<json:string>graphite planes</json:string>
<json:string>heterogeneous mechanism</json:string>
<json:string>high content</json:string>
<json:string>alkali graphitides</json:string>
<json:string>isoprene ceylon</json:string>
<json:string>molecular weight</json:string>
<json:string>layer</json:string>
<json:string>ceylon</json:string>
<json:string>solvent</json:string>
<json:string>interlayer</json:string>
<json:string>oxide</json:string>
<json:string>lamellar compound</json:string>
<json:string>ethylene oxide polymerization</json:string>
<json:string>complexing agent</json:string>
<json:string>polar solvents</json:string>
<json:string>diene monomers</json:string>
<json:string>lithium graphitides</json:string>
<json:string>intercalation compounds</json:string>
<json:string>good initiators</json:string>
<json:string>chemical properties</json:string>
<json:string>diffusion rate</json:string>
<json:string>free ions</json:string>
<json:string>macromolecular chains</json:string>
<json:string>anionic polymerizations</json:string>
<json:string>large number</json:string>
<json:string>interlayer space</json:string>
<json:string>straight line</json:string>
<json:string>stereospecific homopolymerization</json:string>
<json:string>reaction temperature</json:string>
<json:string>kinetic study</json:string>
<json:string>reaction rate</json:string>
<json:string>catalyst efficiency</json:string>
<json:string>termination reaction</json:string>
<json:string>strong interaction</json:string>
<json:string>high initiator efficiency</json:string>
<json:string>specific copolymerization</json:string>
<json:string>secondary reactions</json:string>
<json:string>strong interactions</json:string>
<json:string>complexing molecule</json:string>
<json:string>active centers</json:string>
<json:string>homogeneous conditions</json:string>
<json:string>experimental data</json:string>
<json:string>polymerization proceeds</json:string>
<json:string>interesting results</json:string>
<json:string>madagascar graphite</json:string>
<json:string>polyisoprene microstructures</json:string>
<json:string>graphite layers increases</json:string>
<json:string>high yields</json:string>
<json:string>isoprene polymerization</json:string>
<json:string>temperature increases</json:string>
<json:string>thermal agitation</json:string>
<json:string>complexing agents</json:string>
<json:string>diffusion phenomena</json:string>
<json:string>hydrocarbon solvents</json:string>
<json:string>styrene content</json:string>
<json:string>first stage</json:string>
<json:string>graphite intercalation</json:string>
<json:string>synthetic metals</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>J. Gole</name>
<affiliations>
<json:string>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</json:string>
<json:string>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</json:string>
</affiliations>
</json:item>
<json:item>
<name>G. Merle</name>
<affiliations>
<json:string>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</json:string>
<json:string>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</json:string>
</affiliations>
</json:item>
<json:item>
<name>J.P. Pascault</name>
<affiliations>
<json:string>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</json:string>
<json:string>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-6MBH95MW-Z</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.Using kinetic observations (polymerization of styrene and isoprene initiated by LiC12, or of ethylene oxide by KC24, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators: •-protection of the live end which can show high tacticity and slow down some secondary reactions;•-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;•-a configuration of a given monomer for a stereospecific homopolymerization.Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.</abstract>
<qualityIndicators>
<score>9.304</score>
<pdfWordCount>11530</pdfWordCount>
<pdfCharCount>57475</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>29</pdfPageCount>
<pdfPageSize>468 x 684 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>192</abstractWordCount>
<abstractCharCount>1400</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Graphite intercalation compounds as anionic polymerization initiators</title>
<pii>
<json:string>0379-6779(82)90001-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<serie>
<title>Varna, Bulgaria, preprints COPISEE</title>
<language>
<json:string>unknown</json:string>
</language>
</serie>
<host>
<title>Synthetic Metals</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1982</publicationDate>
<issn>
<json:string>0379-6779</json:string>
</issn>
<pii>
<json:string>S0379-6779(00)X0126-9</json:string>
</pii>
<volume>4</volume>
<issue>4</issue>
<pages>
<first>269</first>
<last>297</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1982</json:string>
<json:string>1965</json:string>
</date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Time Yield</json:string>
<json:string>P. Lagrange</json:string>
<json:string>Rashkov</json:string>
<json:string>Panayotov</json:string>
<json:string>D. Gu</json:string>
</persName>
<placeName>
<json:string>Madagascar</json:string>
<json:string>Tacticity</json:string>
<json:string>Netherlands</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[ 21]</json:string>
<json:string>[50]</json:string>
<json:string>Volpin et al. [47]</json:string>
<json:string>[4]</json:string>
<json:string>[ 37]</json:string>
<json:string>[45]</json:string>
<json:string>Parrod et al.</json:string>
<json:string>Podall et al.</json:string>
<json:string>Rashkov et al. [46]</json:string>
<json:string>[29]</json:string>
<json:string>[6]</json:string>
<json:string>[ 1 ]</json:string>
<json:string>Stein et al.</json:string>
<json:string>[33]</json:string>
<json:string>[8]</json:string>
<json:string>[28, 33]</json:string>
<json:string>[ 34 ]</json:string>
<json:string>[ 31 ]</json:string>
<json:string>[7, 9]</json:string>
<json:string>[ 45 ]</json:string>
<json:string>Rashkov et al. [38]</json:string>
<json:string>[32]</json:string>
<json:string>[31 ]</json:string>
<json:string>[49]</json:string>
<json:string>Received March 17, 1981</json:string>
<json:string>[3]</json:string>
<json:string>[1 ]</json:string>
<json:string>[53]</json:string>
<json:string>Panayotov et al. [31]</json:string>
<json:string>[5]</json:string>
<json:string>[1 - 4]</json:string>
<json:string>[37]</json:string>
<json:string>[ 35 ]</json:string>
<json:string>[ 19]</json:string>
<json:string>[52]</json:string>
<json:string>[7]</json:string>
<json:string>[36]</json:string>
<json:string>[9]</json:string>
<json:string>[51]</json:string>
<json:string>[2]</json:string>
<json:string>[46]</json:string>
<json:string>[5, 27]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-6MBH95MW-Z</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - polymer science</json:string>
<json:string>2 - physics, condensed matter</json:string>
<json:string>2 - materials science, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - physics & astronomy</json:string>
<json:string>3 - applied physics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Materials Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Metals and Alloys</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Mechanical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Mechanics of Materials</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Physics and Astronomy</json:string>
<json:string>3 - Condensed Matter Physics</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Electronic, Optical and Magnetic Materials</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - sciences appliquees</json:string>
<json:string>4 - pollution</json:string>
</inist>
</categories>
<publicationDate>1982</publicationDate>
<copyrightDate>1982</copyrightDate>
<doi>
<json:string>10.1016/0379-6779(82)90001-7</json:string>
</doi>
<id>279A545D569B16516A5258451CA0293BF74867CF</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-6MBH95MW-Z/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-6MBH95MW-Z/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-6MBH95MW-Z/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Graphite intercalation compounds as anionic polymerization initiators</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>elsevier</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M"></p>
<date>1982</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Graphite intercalation compounds as anionic polymerization initiators</title>
<author xml:id="author-0000">
<persName>
<forename type="first">J.</forename>
<surname>Gole</surname>
</persName>
<affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</affiliation>
<affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">G.</forename>
<surname>Merle</surname>
</persName>
<affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</affiliation>
<affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">J.P.</forename>
<surname>Pascault</surname>
</persName>
<affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</affiliation>
<affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</affiliation>
</author>
<idno type="istex">279A545D569B16516A5258451CA0293BF74867CF</idno>
<idno type="ark">ark:/67375/6H6-6MBH95MW-Z</idno>
<idno type="DOI">10.1016/0379-6779(82)90001-7</idno>
<idno type="PII">0379-6779(82)90001-7</idno>
</analytic>
<monogr>
<title level="j">Synthetic Metals</title>
<title level="j" type="abbrev">SYNMET</title>
<idno type="pISSN">0379-6779</idno>
<idno type="PII">S0379-6779(00)X0126-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1982"></date>
<biblScope unit="volume">4</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="269">269</biblScope>
<biblScope unit="page" to="297">297</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1982</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.Using kinetic observations (polymerization of styrene and isoprene initiated by LiC12, or of ethylene oxide by KC24, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators: •-protection of the live end which can show high tacticity and slow down some secondary reactions;•-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;•-a configuration of a given monomer for a stereospecific homopolymerization.Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1982">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-6MBH95MW-Z/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>SYNMET</jid>
<aid>82900017</aid>
<ce:pii>0379-6779(82)90001-7</ce:pii>
<ce:doi>10.1016/0379-6779(82)90001-7</ce:doi>
<ce:copyright type="unknown" year="1982"></ce:copyright>
</item-info>
<head>
<ce:title>Graphite intercalation compounds as anionic polymerization initiators</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>J.</ce:given-name>
<ce:surname>Gole</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>G.</ce:given-name>
<ce:surname>Merle</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>J.P.</ce:given-name>
<ce:surname>Pascault</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="17" month="3" year="1981"></ce:date-received>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.</ce:simple-para>
<ce:simple-para>Using kinetic observations (polymerization of styrene and isoprene initiated by LiC
<ce:inf>12</ce:inf>
, or of ethylene oxide by KC
<ce:inf>24</ce:inf>
, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.</ce:simple-para>
<ce:simple-para>The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators:
<ce:list>
<ce:list-item>
<ce:label></ce:label>
<ce:para>-protection of the live end which can show high tacticity and slow down some secondary reactions;</ce:para>
</ce:list-item>
<ce:list-item>
<ce:label></ce:label>
<ce:para>-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;</ce:para>
</ce:list-item>
<ce:list-item>
<ce:label></ce:label>
<ce:para>-a configuration of a given monomer for a stereospecific homopolymerization.</ce:para>
</ce:list-item>
</ce:list>
</ce:simple-para>
<ce:simple-para>Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Graphite intercalation compounds as anionic polymerization initiators</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Graphite intercalation compounds as anionic polymerization initiators</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Gole</namePart>
<affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</affiliation>
<affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Merle</namePart>
<affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</affiliation>
<affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J.P.</namePart>
<namePart type="family">Pascault</namePart>
<affiliation>Laboratoire des Matériaux Macromoléculaires, E.R.A. 745, Bâtiment 403, France</affiliation>
<affiliation>National des Sciences Appliquées, 69621 Villeurbanne Cédex France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1982</dateIssued>
<copyrightDate encoding="w3cdtf">1982</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: The graphite intercalation compounds of alkali metals, both binary (alkali graphitides) and tenary (graphitides solvated by organic molecules), are anionic polymerization initiators; the descriptive aspect is reviewed.Using kinetic observations (polymerization of styrene and isoprene initiated by LiC12, or of ethylene oxide by KC24, or polymerization-depolymerization equilibria) it is shown that the propagation rate constants are slower than in homogeneous media, and that the efficiency of the initiator depends on the kind of monomer or graphite and the influence of the diffusion phenomena in the interlayer spacing of the lamellar compound during the course of polymerization.The study of microstructure and tacticity of polymers and copolymers explains how the graphite layers play a part in the polymerization mechanism, leading to new properties of the graphitides as initiators: •-protection of the live end which can show high tacticity and slow down some secondary reactions;•-a new coordination with one or two graphite layers in addition to diffusion phenomena able to select one monomer among several for a specific copolymerization;•-a configuration of a given monomer for a stereospecific homopolymerization.Finally, alkali graphitides are not only versatile and easy-to-use packed anionic initiators, but also initiators having new specificities.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Synthetic Metals</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>SYNMET</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1982</dateIssued>
</originInfo>
<identifier type="ISSN">0379-6779</identifier>
<identifier type="PII">S0379-6779(00)X0126-9</identifier>
<part>
<date>1982</date>
<detail type="issue">
<title>An International Journal Integrating Research and Applications on Intercalation Compounds of Graphite, Transition Metal Compounds, and Quasi One-Dimensional Conductors</title>
</detail>
<detail type="volume">
<number>4</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>269</start>
<end>386</end>
</extent>
<extent unit="pages">
<start>269</start>
<end>297</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">279A545D569B16516A5258451CA0293BF74867CF</identifier>
<identifier type="ark">ark:/67375/6H6-6MBH95MW-Z</identifier>
<identifier type="DOI">10.1016/0379-6779(82)90001-7</identifier>
<identifier type="PII">0379-6779(82)90001-7</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-6MBH95MW-Z/record.json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000909 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000909 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:279A545D569B16516A5258451CA0293BF74867CF
   |texte=   Graphite intercalation compounds as anionic polymerization initiators
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022