Serveur d'exploration sur le chêne en Belgique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world

Identifieur interne : 001181 ( Istex/Corpus ); précédent : 001180; suivant : 001182

Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world

Auteurs : Marion Liberloo ; Carlo Calfapietra ; Martin Lukac ; Douglas Godbold ; Zhi-Bin Luo ; Andrea Polle ; Marcel R. Hoosbeek ; Olevi Kull ; Michal Marek ; Christine Raines ; Mauro Rubino ; Gail Taylor ; Giuseppe Scarascia-Mugnozza ; Reinhart Ceulemans

Source :

RBID : ISTEX:490C3BD635859FA1EA24B45BE1DB842EA12B8D38

English descriptors

Abstract

The quickly rising atmospheric carbon dioxide (CO2)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS‐11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2‐induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy.

Url:
DOI: 10.1111/j.1365-2486.2006.01118.x

Links to Exploration step

ISTEX:490C3BD635859FA1EA24B45BE1DB842EA12B8D38

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world</title>
<author>
<name sortKey="Liberloo, Marion" sort="Liberloo, Marion" uniqKey="Liberloo M" first="Marion" last="Liberloo">Marion Liberloo</name>
<affiliation>
<mods:affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Calfapietra, Carlo" sort="Calfapietra, Carlo" uniqKey="Calfapietra C" first="Carlo" last="Calfapietra">Carlo Calfapietra</name>
<affiliation>
<mods:affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lukac, Martin" sort="Lukac, Martin" uniqKey="Lukac M" first="Martin" last="Lukac">Martin Lukac</name>
<affiliation>
<mods:affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Godbold, Douglas" sort="Godbold, Douglas" uniqKey="Godbold D" first="Douglas" last="Godbold">Douglas Godbold</name>
<affiliation>
<mods:affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luo, Zhi In" sort="Luo, Zhi In" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
<affiliation>
<mods:affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation>
<mods:affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoosbeek, Marcel R" sort="Hoosbeek, Marcel R" uniqKey="Hoosbeek M" first="Marcel R." last="Hoosbeek">Marcel R. Hoosbeek</name>
<affiliation>
<mods:affiliation>Department of Environmental Sciences, Earth System Science Group, Wageningen University, PO Box 37, 6700AA Wageningen, The Netherlands,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kull, Olevi" sort="Kull, Olevi" uniqKey="Kull O" first="Olevi" last="Kull">Olevi Kull</name>
<affiliation>
<mods:affiliation>Institute of Botany and Ecology, University of Tartu, Lai 40, 51005 Tartu, Estonia,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marek, Michal" sort="Marek, Michal" uniqKey="Marek M" first="Michal" last="Marek">Michal Marek</name>
<affiliation>
<mods:affiliation>Institute of Landscape Ecology Academy of Sciences, Pooiei 3b, 603 00 Brno, Czech Republic,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raines, Christine" sort="Raines, Christine" uniqKey="Raines C" first="Christine" last="Raines">Christine Raines</name>
<affiliation>
<mods:affiliation>Department of Biological Sciences, University of Essex, Colchester CO4 3SQ Essex, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rubino, Mauro" sort="Rubino, Mauro" uniqKey="Rubino M" first="Mauro" last="Rubino">Mauro Rubino</name>
<affiliation>
<mods:affiliation>Department of Environmental Sciences, 11 University of Napels, via Vivaldi 43, 81100 Caserta, Italy,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Gail" sort="Taylor, Gail" uniqKey="Taylor G" first="Gail" last="Taylor">Gail Taylor</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX Southampton, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scarascia Ugnozza, Giuseppe" sort="Scarascia Ugnozza, Giuseppe" uniqKey="Scarascia Ugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
<affiliation>
<mods:affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<mods:affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:490C3BD635859FA1EA24B45BE1DB842EA12B8D38</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1111/j.1365-2486.2006.01118.x</idno>
<idno type="url">https://api.istex.fr/document/490C3BD635859FA1EA24B45BE1DB842EA12B8D38/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001181</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001181</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world</title>
<author>
<name sortKey="Liberloo, Marion" sort="Liberloo, Marion" uniqKey="Liberloo M" first="Marion" last="Liberloo">Marion Liberloo</name>
<affiliation>
<mods:affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Calfapietra, Carlo" sort="Calfapietra, Carlo" uniqKey="Calfapietra C" first="Carlo" last="Calfapietra">Carlo Calfapietra</name>
<affiliation>
<mods:affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lukac, Martin" sort="Lukac, Martin" uniqKey="Lukac M" first="Martin" last="Lukac">Martin Lukac</name>
<affiliation>
<mods:affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Godbold, Douglas" sort="Godbold, Douglas" uniqKey="Godbold D" first="Douglas" last="Godbold">Douglas Godbold</name>
<affiliation>
<mods:affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Luo, Zhi In" sort="Luo, Zhi In" uniqKey="Luo Z" first="Zhi-Bin" last="Luo">Zhi-Bin Luo</name>
<affiliation>
<mods:affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation>
<mods:affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoosbeek, Marcel R" sort="Hoosbeek, Marcel R" uniqKey="Hoosbeek M" first="Marcel R." last="Hoosbeek">Marcel R. Hoosbeek</name>
<affiliation>
<mods:affiliation>Department of Environmental Sciences, Earth System Science Group, Wageningen University, PO Box 37, 6700AA Wageningen, The Netherlands,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kull, Olevi" sort="Kull, Olevi" uniqKey="Kull O" first="Olevi" last="Kull">Olevi Kull</name>
<affiliation>
<mods:affiliation>Institute of Botany and Ecology, University of Tartu, Lai 40, 51005 Tartu, Estonia,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marek, Michal" sort="Marek, Michal" uniqKey="Marek M" first="Michal" last="Marek">Michal Marek</name>
<affiliation>
<mods:affiliation>Institute of Landscape Ecology Academy of Sciences, Pooiei 3b, 603 00 Brno, Czech Republic,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Raines, Christine" sort="Raines, Christine" uniqKey="Raines C" first="Christine" last="Raines">Christine Raines</name>
<affiliation>
<mods:affiliation>Department of Biological Sciences, University of Essex, Colchester CO4 3SQ Essex, UK,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rubino, Mauro" sort="Rubino, Mauro" uniqKey="Rubino M" first="Mauro" last="Rubino">Mauro Rubino</name>
<affiliation>
<mods:affiliation>Department of Environmental Sciences, 11 University of Napels, via Vivaldi 43, 81100 Caserta, Italy,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Gail" sort="Taylor, Gail" uniqKey="Taylor G" first="Gail" last="Taylor">Gail Taylor</name>
<affiliation>
<mods:affiliation>School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX Southampton, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scarascia Ugnozza, Giuseppe" sort="Scarascia Ugnozza, Giuseppe" uniqKey="Scarascia Ugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
<affiliation>
<mods:affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<mods:affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Global Change Biology</title>
<idno type="ISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2006-06">2006-06</date>
<biblScope unit="volume">12</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1094">1094</biblScope>
<biblScope unit="page" to="1106">1106</biblScope>
</imprint>
<idno type="ISSN">1354-1013</idno>
</series>
<idno type="istex">490C3BD635859FA1EA24B45BE1DB842EA12B8D38</idno>
<idno type="DOI">10.1111/j.1365-2486.2006.01118.x</idno>
<idno type="ArticleID">GCB1118</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1354-1013</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>EUROFACE</term>
<term>FACE</term>
<term>Populus</term>
<term>biomass distribution</term>
<term>bio‐energy</term>
<term>fertilization</term>
<term>leaf area index</term>
<term>photosynthesis</term>
<term>short rotation coppice</term>
<term>woody biomass</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The quickly rising atmospheric carbon dioxide (CO2)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS‐11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2‐induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>MARION LIBERLOO</name>
<affiliations>
<json:string>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</json:string>
</affiliations>
</json:item>
<json:item>
<name>CARLO CALFAPIETRA</name>
<affiliations>
<json:string>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</json:string>
</affiliations>
</json:item>
<json:item>
<name>MARTIN LUKAC</name>
<affiliations>
<json:string>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</json:string>
</affiliations>
</json:item>
<json:item>
<name>DOUGLAS GODBOLD</name>
<affiliations>
<json:string>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</json:string>
</affiliations>
</json:item>
<json:item>
<name>ZHI‐BIN LUO</name>
<affiliations>
<json:string>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>ANDREA POLLE</name>
<affiliations>
<json:string>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</json:string>
</affiliations>
</json:item>
<json:item>
<name>MARCEL R. HOOSBEEK</name>
<affiliations>
<json:string>Department of Environmental Sciences, Earth System Science Group, Wageningen University, PO Box 37, 6700AA Wageningen, The Netherlands,</json:string>
</affiliations>
</json:item>
<json:item>
<name>OLEVI KULL</name>
<affiliations>
<json:string>Institute of Botany and Ecology, University of Tartu, Lai 40, 51005 Tartu, Estonia,</json:string>
</affiliations>
</json:item>
<json:item>
<name>MICHAL MAREK</name>
<affiliations>
<json:string>Institute of Landscape Ecology Academy of Sciences, Pooiei 3b, 603 00 Brno, Czech Republic,</json:string>
</affiliations>
</json:item>
<json:item>
<name>CHRISTINE RAINES</name>
<affiliations>
<json:string>Department of Biological Sciences, University of Essex, Colchester CO4 3SQ Essex, UK,</json:string>
</affiliations>
</json:item>
<json:item>
<name>MAURO RUBINO</name>
<affiliations>
<json:string>Department of Environmental Sciences, 11 University of Napels, via Vivaldi 43, 81100 Caserta, Italy,</json:string>
</affiliations>
</json:item>
<json:item>
<name>GAIL TAYLOR</name>
<affiliations>
<json:string>School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX Southampton, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>GIUSEPPE SCARASCIA‐MUGNOZZA</name>
<affiliations>
<json:string>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</json:string>
</affiliations>
</json:item>
<json:item>
<name>REINHART CEULEMANS</name>
<affiliations>
<json:string>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bio‐energy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biomass distribution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>EUROFACE</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FACE</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>fertilization</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>leaf area index</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>photosynthesis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Populus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>short rotation coppice</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>woody biomass</value>
</json:item>
</subject>
<articleId>
<json:string>GCB1118</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The quickly rising atmospheric carbon dioxide (CO2)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS‐11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2‐induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1815</abstractCharCount>
<pdfWordCount>8568</pdfWordCount>
<pdfCharCount>51614</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>266</abstractWordCount>
</qualityIndicators>
<title>Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>EA Ainsworth</name>
</json:item>
<json:item>
<name>SP Long</name>
</json:item>
</author>
<host>
<volume>165</volume>
<pages>
<last>372</last>
<first>351</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Battaglia</name>
</json:item>
<json:item>
<name>ML Cherry</name>
</json:item>
<json:item>
<name>CL Beadle</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>528</last>
<first>521</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Prediction of leaf area index in eucalypt plantations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>FA Bazzaz</name>
</json:item>
<json:item>
<name>SL Miao</name>
</json:item>
<json:item>
<name>PM Wayne</name>
</json:item>
</author>
<host>
<volume>96</volume>
<pages>
<last>482</last>
<first>478</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>CO2‐induced growth enhancements of co‐occurring tree species decline at different rates</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PN Beets</name>
</json:item>
<json:item>
<name>D Whitehead</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>138</last>
<first>131</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Carbon partitioning in Pinus radiata stands in relation to foliage nitrogen status</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CJ Bernacchi</name>
</json:item>
<json:item>
<name>C Calfapietra</name>
</json:item>
<json:item>
<name>PA Davey</name>
</json:item>
</author>
<host>
<volume>159</volume>
<pages>
<last>621</last>
<first>609</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Photosynthesis and stomatal conductance responses of poplars to free‐air CO2 enrichment (PopFACE) during the first growing cycle and immediately following coppice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Bosac</name>
</json:item>
<json:item>
<name>SDL Gardner</name>
</json:item>
<json:item>
<name>G Taylor</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>116</last>
<first>103</first>
</pages>
<author></author>
<title>Forest Ecology and Management</title>
</host>
<title>Elevated CO2 and hybrid poplar</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JP Bryant</name>
</json:item>
<json:item>
<name>FSI Chapin</name>
</json:item>
<json:item>
<name>DR Klein</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>368</last>
<first>357</first>
</pages>
<author></author>
<title>Oikos</title>
</host>
<title>Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Nitrogen use efficiency of a poplar plantation is increased by elevated CO2</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C Calfapietra</name>
</json:item>
<json:item>
<name>B Gielen</name>
</json:item>
<json:item>
<name>ANJ Galema</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>814</last>
<first>805</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Free‐air CO2 enrichment (FACE) enhances biomass production in a short‐rotation poplar plantation (POPFACE)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C Calfapietra</name>
</json:item>
<json:item>
<name>I Tulva</name>
</json:item>
<json:item>
<name>E Eensalu</name>
</json:item>
</author>
<host>
<volume>137</volume>
<pages>
<last>535</last>
<first>525</first>
</pages>
<author></author>
<title>Environmental Pollution</title>
</host>
<title>Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization under a poplar plantation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Centritto</name>
</json:item>
<json:item>
<name>HSJ Lee</name>
</json:item>
<json:item>
<name>PG Jarvis</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>633</last>
<first>623</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Increased growth in elevated (CO2)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Ceulemans</name>
</json:item>
<json:item>
<name>M Mousseau</name>
</json:item>
</author>
<host>
<volume>127</volume>
<pages>
<last>446</last>
<first>425</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Tansley Review No. 71. Effects of elevated atmospheric CO2 on woody plants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Ceulemans</name>
</json:item>
<json:item>
<name>A Perez‐Leroux</name>
</json:item>
<json:item>
<name>BY Shao</name>
</json:item>
</author>
<host>
<pages>
<last>98</last>
<first>81</first>
</pages>
<author></author>
<title>Vegetation, Modelling and Climatic Change Effects</title>
</host>
<title>Physiology, growth and development of young poplar plants under elevated atmospheric CO2 levels</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KY Crous</name>
</json:item>
<json:item>
<name>DS Ellsworth</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>970</last>
<first>961</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Canopy position affects photosynthetic adjustments to long‐term elevated CO2 concentration (FACE) in aging needles in a mature Pinus taeda forest</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PS Curtis</name>
</json:item>
<json:item>
<name>X Wang</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>313</last>
<first>299</first>
</pages>
<author></author>
<title>Oecologia</title>
</host>
<title>A meta‐analysis of elevated CO2 effects on woody plant mass, form, and physiology</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RE Dickson</name>
</json:item>
<json:item>
<name>MD Coleman</name>
</json:item>
<json:item>
<name>DE Riemenschneider</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>1716</last>
<first>1706</first>
</pages>
<author></author>
<title>Canadian Journal of Forest Research</title>
</host>
<title>Growth of five hybrid poplar genotypes exposed to interacting elevated CO2 and O3</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DS Ellsworth</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
<json:item>
<name>ES Naumburg</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>2138</last>
<first>2121</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free‐air CO2 enrichment experiments in forest, grassland and desert</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B Gielen</name>
</json:item>
<json:item>
<name>R Ceulemans</name>
</json:item>
</author>
<host>
<volume>115</volume>
<pages>
<last>358</last>
<first>335</first>
</pages>
<author></author>
<title>Environmental Pollution</title>
</host>
<title>The likely impact of rising atmospheric CO2 on natural and managed Populus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>TM Hinckley</name>
</json:item>
</author>
<host>
<pages>
<last>281</last>
<first>277</first>
</pages>
<author></author>
<title>Biology of Populus and its implications for management and conservation. Part II. Overview</title>
</host>
<title>Physiology of growth, productivity and stress response</title>
</json:item>
<json:item>
<author>
<json:item>
<name>MR Hoosbeek</name>
</json:item>
<json:item>
<name>M Lukac</name>
</json:item>
<json:item>
<name>D Van Dam</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<first>1040</first>
</pages>
<author></author>
<title>Global Biogeochemical Cycles</title>
</host>
<title>More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE)</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Houghton TJ, Ding Y, Griggs DJ et al. (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, USA, 881pp.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>IA Janssens</name>
</json:item>
<json:item>
<name>M Mousseau</name>
</json:item>
<json:item>
<name>R Ceulemans</name>
</json:item>
</author>
<host>
<pages>
<last>270</last>
<first>245</first>
</pages>
<author></author>
<title>Climate Change and Global Crop Productivity</title>
</host>
<title>Crop ecosystem responses to global climate change</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JS King</name>
</json:item>
<json:item>
<name>TJ Albaugh</name>
</json:item>
<json:item>
<name>HL Allen</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>778</last>
<first>769</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Stand‐level allometry in Pinus taeda as affected by irrigation and fertilization</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KK Kinney</name>
</json:item>
<json:item>
<name>RL Lindroth</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>10</last>
<first>1</first>
</pages>
<author></author>
<title>Canadian Journal of Forest Research</title>
</host>
<title>Responses of three deciduous tree species to atmospheric CO2 and soil NO3− availability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KK Kinney</name>
</json:item>
<json:item>
<name>RL Lindroth</name>
</json:item>
<json:item>
<name>SM Jung</name>
</json:item>
</author>
<host>
<volume>78</volume>
<pages>
<last>230</last>
<first>215</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>Effects of CO2 and NO3− availability on deciduous trees: phytochemistry and insect performance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Liberloo</name>
</json:item>
<json:item>
<name>SY Dillen</name>
</json:item>
<json:item>
<name>C Calfapietra</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>189</last>
<first>179</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Elevated CO2 concentration, fertilization and their interaction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Lukac</name>
</json:item>
<json:item>
<name>C Calfapietra</name>
</json:item>
<json:item>
<name>DL Godbold</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>848</last>
<first>838</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Production, turnover and mycorrhizal colonisation of root systems of three Populus species grown under elevated CO2 (POPFACE)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JP Maroco</name>
</json:item>
<json:item>
<name>E Breia</name>
</json:item>
<json:item>
<name>T Faria</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>113</last>
<first>105</first>
</pages>
<author></author>
<title>Plant Cell and Environment</title>
</host>
<title>Effects of long‐term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F Miglietta</name>
</json:item>
<json:item>
<name>A Peressotti</name>
</json:item>
<json:item>
<name>FP Vaccari</name>
</json:item>
</author>
<host>
<volume>150</volume>
<pages>
<last>476</last>
<first>465</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Free‐air CO2 enrichment (FACE) of a poplar plantation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CP Mitchell</name>
</json:item>
<json:item>
<name>EA Stevens</name>
</json:item>
<json:item>
<name>MP Watters</name>
</json:item>
</author>
<host>
<volume>121</volume>
<pages>
<last>136</last>
<first>123</first>
</pages>
<author></author>
<title>Forest Ecology and Management</title>
</host>
<title>Short‐rotation forestry‐operations, productivity and costs based on experience gained in the UK</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S Nonhebel</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>167</last>
<first>159</first>
</pages>
<author></author>
<title>Biomass and Bioenergy</title>
</host>
<title>Energy yields in intensive and extensive biomass production systems</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RJ Norby</name>
</json:item>
</author>
<host>
<volume>165</volume>
<pages>
<last>20</last>
<first>9</first>
</pages>
<author></author>
<title>Plant and Soil</title>
</host>
<title>Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RJ Norby</name>
</json:item>
</author>
<host>
<volume>139</volume>
<pages>
<last>200</last>
<first>189</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Nitrogen deposition</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RJ Norby</name>
</json:item>
<json:item>
<name>SD Wullschleger</name>
</json:item>
<json:item>
<name>CA Gunderson</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>714</last>
<first>683</first>
</pages>
<author></author>
<title>Plant, Cell and Environment</title>
</host>
<title>Tree responses to rising CO2 in field experiments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Oren</name>
</json:item>
<json:item>
<name>DS Ellsworth</name>
</json:item>
<json:item>
<name>KH Johnsen</name>
</json:item>
</author>
<host>
<volume>411</volume>
<pages>
<last>472</last>
<first>469</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Soil fertility limits carbon sequestration by forest ecosystems in a CO2‐enriched atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JY Pontailler</name>
</json:item>
<json:item>
<name>R Ceulemans</name>
</json:item>
<json:item>
<name>J Guittet</name>
</json:item>
</author>
<host>
<volume>72</volume>
<pages>
<last>163</last>
<first>157</first>
</pages>
<author></author>
<title>Forestry</title>
</host>
<title>Biomass yield of poplar after five 2‐year coppice rotations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KS Pregitzer</name>
</json:item>
<json:item>
<name>DR Zak</name>
</json:item>
<json:item>
<name>PS Curtis</name>
</json:item>
</author>
<host>
<volume>129</volume>
<pages>
<last>585</last>
<first>579</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Atmospheric CO2, soil nitrogen and turnover of fine roots</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SG Pritchard</name>
</json:item>
<json:item>
<name>HH Rogers</name>
</json:item>
</author>
<host>
<volume>147</volume>
<pages>
<last>71</last>
<first>55</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Spatial and temporal deployment of crop roots in CO2‐enriched environments</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KM Radoglou</name>
</json:item>
<json:item>
<name>PG Jarvis</name>
</json:item>
</author>
<host>
<volume>65</volume>
<pages>
<last>626</last>
<first>617</first>
</pages>
<author></author>
<title>Annals of Botany</title>
</host>
<title>Effects of CO2 enrichment on four poplar clones. I. Growth and leaf anatomy</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Rogers</name>
</json:item>
<json:item>
<name>SW Humphries</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>1011</last>
<first>1005</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>A mechanistic evaluation of photosynthetic acclimation at elevated CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>HH Rogers</name>
</json:item>
<json:item>
<name>GB Runion</name>
</json:item>
<json:item>
<name>SV Krupa</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<last>189</last>
<first>155</first>
</pages>
<author></author>
<title>Environmental Pollution</title>
</host>
<title>Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R Sage</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>368</last>
<first>351</first>
</pages>
<author></author>
<title>Photosynthesis research</title>
</host>
<title>Acclimation of photosynthesis to increasing atmospheric CO2</title>
</json:item>
<json:item>
<author>
<json:item>
<name>LJ Samuelson</name>
</json:item>
<json:item>
<name>JR Seiler</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>358</last>
<first>348</first>
</pages>
<author></author>
<title>Forest Science</title>
</host>
<title>Interactive role of elevated CO2, nutrient limitations and water stress in the growth reponses of red spruce seedlings</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H Saxe</name>
</json:item>
<json:item>
<name>DS Ellsworth</name>
</json:item>
<json:item>
<name>J Heath</name>
</json:item>
</author>
<host>
<volume>139</volume>
<pages>
<last>436</last>
<first>395</first>
</pages>
<author></author>
<title>New Phytologist</title>
</host>
<title>Tansley Review No. 98. Tree and forest functioning in an enriched CO2 atmosphere</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GE Scarascia‐Mugnozza</name>
</json:item>
<json:item>
<name>R Ceulemans</name>
</json:item>
<json:item>
<name>PE Heilman</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>294</last>
<first>285</first>
</pages>
<author></author>
<title>Canadian Journal of Forest Research</title>
</host>
<title>Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G Scarascia‐Mugnozza</name>
</json:item>
<json:item>
<name>P De Angelis</name>
</json:item>
<json:item>
<name>M Sabatti</name>
</json:item>
</author>
<host>
<pages>
<last>140</last>
<first>136</first>
</pages>
<author></author>
<title>Terrestrial Ecosystem Research in Europe: Successes, Challenges and Policy</title>
</host>
<title>A FACE experiment on short rotation, intensive poplar plantation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>BD Sigurdsson</name>
</json:item>
<json:item>
<name>H Thorgeirsson</name>
</json:item>
<json:item>
<name>S Linder</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>950</last>
<first>941</first>
</pages>
<author></author>
<title>Tree Physiology</title>
</host>
<title>Growth and dry‐matter partitioning of young Populus trichocarpa in response to carbon dioxide concentration and mineral nutrient availability</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Stettler RF, Bradshaw HD, Heilman PE et al. (1996) Biology of Populus and its implications for Management and Conservation. NRC Research Press, Ottawa, ON.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>JC Volin</name>
</json:item>
<json:item>
<name>PB Reich</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>684</last>
<first>674</first>
</pages>
<author></author>
<title>Physiologia Plantarum</title>
</host>
<title>Interaction of elevated CO2 and O3 on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Waring RH, Schlesinger WH (1985) Forest Ecosystems: Concepts and Management. Academic Press, Orlando.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>VE Wittig</name>
</json:item>
<json:item>
<name>CJ Bernacchi</name>
</json:item>
<json:item>
<name>X‐G Zhu</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>656</last>
<first>644</first>
</pages>
<author></author>
<title>Global Change Biology</title>
</host>
<title>Gross primary production is still stimulated for three Populus species grown under free‐air CO2 enrichment from planting through canopy closure</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SD Wullschleger</name>
</json:item>
<json:item>
<name>RJ Norby</name>
</json:item>
<json:item>
<name>CA Gunderson</name>
</json:item>
</author>
<host>
<pages>
<last>100</last>
<first>79</first>
</pages>
<author></author>
<title>Advances in Carbon Dioxide Effects Research. ASA Special Publication no. 61</title>
</host>
<title>Forest trees and their response to atmospheric CO2 enrichment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DR Zak</name>
</json:item>
<json:item>
<name>KS Pregitzer</name>
</json:item>
<json:item>
<name>PS Curtis</name>
</json:item>
</author>
<host>
<volume>151</volume>
<pages>
<last>117</last>
<first>105</first>
</pages>
<author></author>
<title>Plant and Soil</title>
</host>
<title>Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Zavitkovski</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>422</last>
<first>409</first>
</pages>
<author></author>
<title>Plant and Soil</title>
</host>
<title>Structure and seasonal distribution of litterfall in young plantations of Populus‘Tristis#1’</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>12</volume>
<publisherId>
<json:string>GCB</json:string>
</publisherId>
<pages>
<total>13</total>
<last>1106</last>
<first>1094</first>
</pages>
<issn>
<json:string>1354-1013</json:string>
</issn>
<issue>6</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-2486</json:string>
</eissn>
<title>Global Change Biology</title>
<doi>
<json:string>10.1111/(ISSN)1365-2486</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>environmental sciences</json:string>
<json:string>ecology</json:string>
<json:string>biodiversity conservation</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>ecology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2486.2006.01118.x</json:string>
</doi>
<id>490C3BD635859FA1EA24B45BE1DB842EA12B8D38</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/490C3BD635859FA1EA24B45BE1DB842EA12B8D38/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/490C3BD635859FA1EA24B45BE1DB842EA12B8D38/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/490C3BD635859FA1EA24B45BE1DB842EA12B8D38/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world</title>
<author xml:id="author-1">
<persName>
<forename type="first">MARION</forename>
<surname>LIBERLOO</surname>
</persName>
<affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">CARLO</forename>
<surname>CALFAPIETRA</surname>
</persName>
<affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">MARTIN</forename>
<surname>LUKAC</surname>
</persName>
<affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">DOUGLAS</forename>
<surname>GODBOLD</surname>
</persName>
<affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">ZHI‐BIN</forename>
<surname>LUO</surname>
</persName>
<affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">ANDREA</forename>
<surname>POLLE</surname>
</persName>
<affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">MARCEL R.</forename>
<surname>HOOSBEEK</surname>
</persName>
<affiliation>Department of Environmental Sciences, Earth System Science Group, Wageningen University, PO Box 37, 6700AA Wageningen, The Netherlands,</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">OLEVI</forename>
<surname>KULL</surname>
</persName>
<affiliation>Institute of Botany and Ecology, University of Tartu, Lai 40, 51005 Tartu, Estonia,</affiliation>
</author>
<author xml:id="author-9">
<persName>
<forename type="first">MICHAL</forename>
<surname>MAREK</surname>
</persName>
<affiliation>Institute of Landscape Ecology Academy of Sciences, Pooiei 3b, 603 00 Brno, Czech Republic,</affiliation>
</author>
<author xml:id="author-10">
<persName>
<forename type="first">CHRISTINE</forename>
<surname>RAINES</surname>
</persName>
<affiliation>Department of Biological Sciences, University of Essex, Colchester CO4 3SQ Essex, UK,</affiliation>
</author>
<author xml:id="author-11">
<persName>
<forename type="first">MAURO</forename>
<surname>RUBINO</surname>
</persName>
<affiliation>Department of Environmental Sciences, 11 University of Napels, via Vivaldi 43, 81100 Caserta, Italy,</affiliation>
</author>
<author xml:id="author-12">
<persName>
<forename type="first">GAIL</forename>
<surname>TAYLOR</surname>
</persName>
<affiliation>School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX Southampton, UK</affiliation>
</author>
<author xml:id="author-13">
<persName>
<forename type="first">GIUSEPPE</forename>
<surname>SCARASCIA‐MUGNOZZA</surname>
</persName>
<affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</affiliation>
</author>
<author xml:id="author-14">
<persName>
<forename type="first">REINHART</forename>
<surname>CEULEMANS</surname>
</persName>
<affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Global Change Biology</title>
<idno type="pISSN">1354-1013</idno>
<idno type="eISSN">1365-2486</idno>
<idno type="DOI">10.1111/(ISSN)1365-2486</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2006-06"></date>
<biblScope unit="volume">12</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="1094">1094</biblScope>
<biblScope unit="page" to="1106">1106</biblScope>
</imprint>
</monogr>
<idno type="istex">490C3BD635859FA1EA24B45BE1DB842EA12B8D38</idno>
<idno type="DOI">10.1111/j.1365-2486.2006.01118.x</idno>
<idno type="ArticleID">GCB1118</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The quickly rising atmospheric carbon dioxide (CO2)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS‐11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2‐induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>bio‐energy</term>
</item>
<item>
<term>biomass distribution</term>
</item>
<item>
<term>EUROFACE</term>
</item>
<item>
<term>FACE</term>
</item>
<item>
<term>fertilization</term>
</item>
<item>
<term>leaf area index</term>
</item>
<item>
<term>photosynthesis</term>
</item>
<item>
<term>Populus</term>
</item>
<item>
<term>short rotation coppice</term>
</item>
<item>
<term>woody biomass</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/490C3BD635859FA1EA24B45BE1DB842EA12B8D38/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2486</doi>
<issn type="print">1354-1013</issn>
<issn type="electronic">1365-2486</issn>
<idGroup>
<id type="product" value="GCB"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="GLOBAL CHANGE BIOLOGY">Global Change Biology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="06006">
<doi origin="wiley">10.1111/gcb.2006.12.issue-6</doi>
<numberingGroup>
<numbering type="journalVolume" number="12">12</numbering>
<numbering type="journalIssue" number="6">6</numbering>
</numberingGroup>
<coverDate startDate="2006-06">June 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="14" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2486.2006.01118.x</doi>
<idGroup>
<id type="unit" value="GCB1118"></id>
<id type="supplier" value="1118"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original Articles</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2006-04-13"></event>
<event type="publishedOnlineFinalForm" date="2006-04-13"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.4 mode:FullText source:FullText result:FullText" date="2010-03-30"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1094">1094</numbering>
<numbering type="pageLast" number="1106">1106</numbering>
</numberingGroup>
<correspondenceTo> Marion Liberloo, fax +32 3 820 22 71, e‐mail:
<email normalForm="marion.liberloo@ua.ac.be">marion.liberloo@ua.ac.be</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:GCB.GCB1118.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 14 July 2005; revised version received 26 September 2005; accepted 7 November 2005</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="5"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="54"></count>
<count type="wordTotal" number="9870"></count>
<count type="linksCrossRef" number="114"></count>
</countGroup>
<titleGroup>
<title type="main">Woody biomass production during the second rotation of a bio‐energy
<i>Populus</i>
plantation increases in a future high CO
<sub>2</sub>
world</title>
<title type="shortAuthors">M. LIBERLOO
<i>et al.</i>
</title>
<title type="short">
<i>POPULUS</i>
YIELD UNDER FACE AND FERTILIZATION</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>MARION</givenNames>
<familyName>LIBERLOO</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>CARLO</givenNames>
<familyName>CALFAPIETRA</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3">
<personName>
<givenNames>MARTIN</givenNames>
<familyName>LUKAC</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a3">
<personName>
<givenNames>DOUGLAS</givenNames>
<familyName>GODBOLD</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a4">
<personName>
<givenNames>ZHI‐BIN</givenNames>
<familyName>LUO</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a4">
<personName>
<givenNames>ANDREA</givenNames>
<familyName>POLLE</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a5">
<personName>
<givenNames>MARCEL R.</givenNames>
<familyName>HOOSBEEK</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr8" affiliationRef="#a6">
<personName>
<givenNames>OLEVI</givenNames>
<familyName>KULL</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr9" affiliationRef="#a7">
<personName>
<givenNames>MICHAL</givenNames>
<familyName>MAREK</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr10" affiliationRef="#a8">
<personName>
<givenNames>CHRISTINE</givenNames>
<familyName>RAINES</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr11" affiliationRef="#a9">
<personName>
<givenNames>MAURO</givenNames>
<familyName>RUBINO</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr12" affiliationRef="#a10">
<personName>
<givenNames>GAIL</givenNames>
<familyName>TAYLOR</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr13" affiliationRef="#a2">
<personName>
<givenNames>GIUSEPPE</givenNames>
<familyName>SCARASCIA‐MUGNOZZA</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr14" affiliationRef="#a1">
<personName>
<givenNames>REINHART</givenNames>
<familyName>CEULEMANS</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="BE">
<unparsedAffiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="IT">
<unparsedAffiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3">
<unparsedAffiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="DE">
<unparsedAffiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="NL">
<unparsedAffiliation>Department of Environmental Sciences, Earth System Science Group, Wageningen University, PO Box 37, 6700AA Wageningen, The Netherlands,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a6" countryCode="EE">
<unparsedAffiliation>Institute of Botany and Ecology, University of Tartu, Lai 40, 51005 Tartu, Estonia,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a7" countryCode="CZ">
<unparsedAffiliation>Institute of Landscape Ecology Academy of Sciences, Pooiei 3b, 603 00 Brno, Czech Republic,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a8">
<unparsedAffiliation>Department of Biological Sciences, University of Essex, Colchester CO4 3SQ Essex, UK,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a9" countryCode="IT">
<unparsedAffiliation>Department of Environmental Sciences, 11 University of Napels, via Vivaldi 43, 81100 Caserta, Italy,</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a10" countryCode="GB">
<unparsedAffiliation>School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX Southampton, UK</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">bio‐energy</keyword>
<keyword xml:id="k2">biomass distribution</keyword>
<keyword xml:id="k3">EUROFACE</keyword>
<keyword xml:id="k4">FACE</keyword>
<keyword xml:id="k5">fertilization</keyword>
<keyword xml:id="k6">leaf area index</keyword>
<keyword xml:id="k7">photosynthesis</keyword>
<keyword xml:id="k8">
<i>Populus</i>
</keyword>
<keyword xml:id="k9">short rotation coppice</keyword>
<keyword xml:id="k10">woody biomass</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The quickly rising atmospheric carbon dioxide (CO
<sub>2</sub>
)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO
<sub>2</sub>
increase. Here, we report the likely impact of future increases in atmospheric CO
<sub>2</sub>
on woody biomass production of three poplar species (
<i>Populus alba</i>
L. clone 2AS‐11,
<i>Populus nigra</i>
L. clone Jean Pourtet and
<i>Populus</i>
×
<i>euramericana</i>
clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO
<sub>2</sub>
(FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO
<sub>2</sub>
and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO
<sub>2</sub>
enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO
<sub>2</sub>
during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO
<sub>2</sub>
‐induced biomass increase after coppice. These results suggest that, under future CO
<sub>2</sub>
concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>POPULUS YIELD UNDER FACE AND FERTILIZATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world</title>
</titleInfo>
<name type="personal">
<namePart type="given">MARION</namePart>
<namePart type="family">LIBERLOO</namePart>
<affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CARLO</namePart>
<namePart type="family">CALFAPIETRA</namePart>
<affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MARTIN</namePart>
<namePart type="family">LUKAC</namePart>
<affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DOUGLAS</namePart>
<namePart type="family">GODBOLD</namePart>
<affiliation>School of Agricultural and Forest Sciences, University of Wales, Deiniol Road, Bangor LL57 2UW, UK,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ZHI‐BIN</namePart>
<namePart type="family">LUO</namePart>
<affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ANDREA</namePart>
<namePart type="family">POLLE</namePart>
<affiliation>Forstbotanishes Institut, George‐August Universität, Büsgenweg 2, 37077 Göttingen, Germany,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MARCEL R.</namePart>
<namePart type="family">HOOSBEEK</namePart>
<affiliation>Department of Environmental Sciences, Earth System Science Group, Wageningen University, PO Box 37, 6700AA Wageningen, The Netherlands,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">OLEVI</namePart>
<namePart type="family">KULL</namePart>
<affiliation>Institute of Botany and Ecology, University of Tartu, Lai 40, 51005 Tartu, Estonia,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MICHAL</namePart>
<namePart type="family">MAREK</namePart>
<affiliation>Institute of Landscape Ecology Academy of Sciences, Pooiei 3b, 603 00 Brno, Czech Republic,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CHRISTINE</namePart>
<namePart type="family">RAINES</namePart>
<affiliation>Department of Biological Sciences, University of Essex, Colchester CO4 3SQ Essex, UK,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MAURO</namePart>
<namePart type="family">RUBINO</namePart>
<affiliation>Department of Environmental Sciences, 11 University of Napels, via Vivaldi 43, 81100 Caserta, Italy,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GAIL</namePart>
<namePart type="family">TAYLOR</namePart>
<affiliation>School of Biological Sciences, University of Southampton, Bassett Crescent East, SO16 7PX Southampton, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GIUSEPPE</namePart>
<namePart type="family">SCARASCIA‐MUGNOZZA</namePart>
<affiliation>University of Tuscia, DISAFRI, Via San Camillo De Lellis, I‐01100 Viterbo, Italy,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">REINHART</namePart>
<namePart type="family">CEULEMANS</namePart>
<affiliation>Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium,</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006-06</dateIssued>
<edition>Received 14 July 2005; revised version received 26 September 2005; accepted 7 November 2005</edition>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
<extent unit="tables">5</extent>
<extent unit="references">54</extent>
<extent unit="words">9870</extent>
</physicalDescription>
<abstract lang="en">The quickly rising atmospheric carbon dioxide (CO2)‐levels, justify the need to explore all carbon (C) sequestration possibilities that might mitigate the current CO2 increase. Here, we report the likely impact of future increases in atmospheric CO2 on woody biomass production of three poplar species (Populus alba L. clone 2AS‐11, Populus nigra L. clone Jean Pourtet and Populus×euramericana clone I‐214). Trees were growing in a high‐density coppice plantation during the second rotation (i.e., regrowth after coppice; 2002–2004; POPFACE/EUROFACE). Six plots were studied, half of which were continuously fumigated with CO2 (FACE; free air carbon dioxide enrichment of 550 ppm). Half of each plot was fertilized to study the interaction between CO2 and nutrient fertilization. At the end of the second rotation, selective above‐ and belowground harvests were performed to estimate the productivity of this bio‐energy plantation. Fertilization did not affect growth of the poplar trees, which was likely because of the high rates of fertilization during the previous agricultural land use. In contrast, elevated CO2 enhanced biomass production by up to 29%, and this stimulation did not differ between above‐ and belowground parts. The increased initial stump size resulting from elevated CO2 during the first rotation (1999–2001) could not solely explain the observed final biomass increase. The larger leaf area index after canopy closure and the absence of any major photosynthetic acclimation after 6 years of fumigation caused the sustained CO2‐induced biomass increase after coppice. These results suggest that, under future CO2 concentrations, managed poplar coppice systems may exhibit higher potential for C sequestration and, thus, help mitigate climate change when used as a source of C‐neutral energy.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>bio‐energy</topic>
<topic>biomass distribution</topic>
<topic>EUROFACE</topic>
<topic>FACE</topic>
<topic>fertilization</topic>
<topic>leaf area index</topic>
<topic>photosynthesis</topic>
<topic>Populus</topic>
<topic>short rotation coppice</topic>
<topic>woody biomass</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Global Change Biology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1354-1013</identifier>
<identifier type="eISSN">1365-2486</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2486</identifier>
<identifier type="PublisherID">GCB</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>1094</start>
<end>1106</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">490C3BD635859FA1EA24B45BE1DB842EA12B8D38</identifier>
<identifier type="DOI">10.1111/j.1365-2486.2006.01118.x</identifier>
<identifier type="ArticleID">GCB1118</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Bois/explor/CheneBelgiqueV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001181 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001181 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Bois
   |area=    CheneBelgiqueV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:490C3BD635859FA1EA24B45BE1DB842EA12B8D38
   |texte=   Woody biomass production during the second rotation of a bio‐energy Populus plantation increases in a future high CO2 world
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Wed Mar 22 20:06:11 2017. Site generation: Wed Mar 6 16:09:04 2024