Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions

Identifieur interne : 000262 ( PascalFrancis/Corpus ); précédent : 000261; suivant : 000263

Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions

Auteurs : Daniel Felten ; Christoph Emmerling

Source :

RBID : Pascal:12-0439635

Descripteurs français

English descriptors

Abstract

Bioenergy is becoming an important option in Global Change mitigation policy world-wide. In agriculture, cultivation of energy crops for biodiesel, biogas, or bioethanol production received considerable attention in the past decades. Beyond this, the cultivation of Miscanthus, used as solid fuel for combustion, may lead to an increase in soil organic matter content compared to other agricultural land use, since C-sequestration potential in soils of Miscanthus crops is high due to, e.g., high amounts of harvest residues. This may indirectly contribute to a reduction of atmospheric CO2 concentration. The objective of the present work was to investigate the development of soil organic carbon and Miscanthus-derived C contents, as well as to estimate carbon stocks in soils cultivated with Miscanthus using 13C-natural-abundance technique. The investigations were carried out in relation to soil depth up to 150cm in a sequence of 2, 5, and 16 y of cultivation relative to a reference soil cultivated with cereals. Amounts of total organic C (TOC) and Miscanthus-derived C (Miscanthus-C) increased with increasing duration of cultivation. For example, TOC increased from 12.8 to 21.3 g Ckg-1 after 16 y of cultivation at the depth of 0-15 cm, whereby the portion of Miscanthus-C reached 5.8 g C kg-1. Also within deeper soil layers down to 60cm depth a significant enhancement of Miscanthus-C was detectable even though TOC contents were not significantly enhanced. At soil depth below 60 cm, no significant differences between treatments were found for Miscanthus-C. Within 16 y of continuous commercial farming, Miscanthus stands accumulated a total of 17.7 Mg C ha-1 derived from Miscanthus residues (C4-C), which is equivalent to 1.1 Mg C4-C ha-1 y-1. The annual surplus might function as CO2 credit within a greenhouse-gas balance. Moreover, the beneficial properties of Miscanthus cultivation combined with a low requirement on fertilization may justify the status of Miscanthus as a sustainable low-input bioenergy crop.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1436-8730
A03   1    @0 J. plant nutr. soil sci. : (1999)
A05       @2 175
A06       @2 5
A08 01  1  ENG  @1 Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions
A11 01  1    @1 FELTEN (Daniel)
A11 02  1    @1 EMMERLING (Christoph)
A14 01      @1 Department of Soil Science, University Trier, Campus II, Behringstrasse @2 54296 Trier @3 DEU @Z 1 aut. @Z 2 aut.
A20       @1 661-670
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 4185 @5 354000509594030020
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 12-0439635
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of plant nutrition and soil science : (1999)
A66 01      @0 DEU
C01 01    ENG  @0 Bioenergy is becoming an important option in Global Change mitigation policy world-wide. In agriculture, cultivation of energy crops for biodiesel, biogas, or bioethanol production received considerable attention in the past decades. Beyond this, the cultivation of Miscanthus, used as solid fuel for combustion, may lead to an increase in soil organic matter content compared to other agricultural land use, since C-sequestration potential in soils of Miscanthus crops is high due to, e.g., high amounts of harvest residues. This may indirectly contribute to a reduction of atmospheric CO2 concentration. The objective of the present work was to investigate the development of soil organic carbon and Miscanthus-derived C contents, as well as to estimate carbon stocks in soils cultivated with Miscanthus using 13C-natural-abundance technique. The investigations were carried out in relation to soil depth up to 150cm in a sequence of 2, 5, and 16 y of cultivation relative to a reference soil cultivated with cereals. Amounts of total organic C (TOC) and Miscanthus-derived C (Miscanthus-C) increased with increasing duration of cultivation. For example, TOC increased from 12.8 to 21.3 g Ckg-1 after 16 y of cultivation at the depth of 0-15 cm, whereby the portion of Miscanthus-C reached 5.8 g C kg-1. Also within deeper soil layers down to 60cm depth a significant enhancement of Miscanthus-C was detectable even though TOC contents were not significantly enhanced. At soil depth below 60 cm, no significant differences between treatments were found for Miscanthus-C. Within 16 y of continuous commercial farming, Miscanthus stands accumulated a total of 17.7 Mg C ha-1 derived from Miscanthus residues (C4-C), which is equivalent to 1.1 Mg C4-C ha-1 y-1. The annual surplus might function as CO2 credit within a greenhouse-gas balance. Moreover, the beneficial properties of Miscanthus cultivation combined with a low requirement on fertilization may justify the status of Miscanthus as a sustainable low-input bioenergy crop.
C02 01  X    @0 002A32B
C02 02  X    @0 002A32C02B
C02 03  X    @0 002A32C01B2
C03 01  X  FRE  @0 Accumulation @5 01
C03 01  X  ENG  @0 Accumulation @5 01
C03 01  X  SPA  @0 Acumulación @5 01
C03 02  X  FRE  @0 Profondeur @5 02
C03 02  X  ENG  @0 Depth @5 02
C03 02  X  SPA  @0 Profundidad @5 02
C03 03  X  FRE  @0 Durée @5 03
C03 03  X  ENG  @0 Duration @5 03
C03 03  X  SPA  @0 Duración @5 03
C03 04  X  FRE  @0 Occupation sol @5 04
C03 04  X  ENG  @0 Land use @5 04
C03 04  X  SPA  @0 Ocupación terreno @5 04
C03 05  X  FRE  @0 Analyse isotopique @5 05
C03 05  X  ENG  @0 Isotopic analysis @5 05
C03 05  X  SPA  @0 Análisis isotópico @5 05
C03 06  X  FRE  @0 Champ @5 06
C03 06  X  ENG  @0 Field @5 06
C03 06  X  SPA  @0 Campo @5 06
C03 07  X  FRE  @0 Science du sol @5 07
C03 07  X  ENG  @0 Soil science @5 07
C03 07  X  SPA  @0 Ciencia del suelo @5 07
C03 08  X  FRE  @0 Relation sol plante @5 08
C03 08  X  ENG  @0 Soil plant relation @5 08
C03 08  X  SPA  @0 Relación suelo planta @5 08
C03 09  X  FRE  @0 Carbone Isotope @2 NC @2 NA @5 09
C03 09  X  ENG  @0 Carbon Isotopes @2 NC @2 NA @5 09
C03 09  X  SPA  @0 Carbono Isótopo @2 NC @2 NA @5 09
C03 10  X  FRE  @0 Plante énergétique @5 10
C03 10  X  ENG  @0 Energy crop @5 10
C03 10  X  SPA  @0 Planta energética @5 10
C03 11  X  FRE  @0 Plante pérenne @5 11
C03 11  X  ENG  @0 Perennial plant @5 11
C03 11  X  SPA  @0 Planta perenne @5 11
C03 12  X  FRE  @0 Sol @2 NT @5 24
C03 12  X  ENG  @0 Soils @2 NT @5 24
C03 12  X  SPA  @0 Suelo @2 NT @5 24
C03 14  X  FRE  @0 Plante en C4 @4 INC @5 70
C03 15  X  FRE  @0 Miscanthus @4 INC @5 72
C03 16  X  FRE  @0 Carbone 13 @4 CD @5 96
C03 16  X  ENG  @0 C-13 @4 CD @5 96
C03 16  X  SPA  @0 C-13 @4 CD @5 96
C03 17  X  FRE  @0 Agriculture commerciale @4 CD @5 97
C03 17  X  ENG  @0 Commercial farming @4 CD @5 97
C03 17  X  SPA  @0 Agricultura comercial @4 CD @5 97
C07 01  X  FRE  @0 Gramineae @2 NS @5 31
C07 01  X  ENG  @0 Gramineae @2 NS @5 31
C07 01  X  SPA  @0 Gramineae @2 NS @5 31
C07 02  X  FRE  @0 Monocotyledones @2 NS
C07 02  X  ENG  @0 Monocotyledones @2 NS
C07 02  X  SPA  @0 Monocotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Type C4 @5 32
C07 05  X  ENG  @0 C4-Type @5 32
C07 05  X  SPA  @0 Tipo C4 @5 32
C07 06  X  FRE  @0 Système exploitation agricole @5 33
C07 06  X  ENG  @0 Farming system @5 33
C07 06  X  SPA  @0 Sistema de explotación agrícola @5 33
C07 07  X  FRE  @0 Végétal @5 39
C07 07  X  ENG  @0 Vegetals @5 39
C07 07  X  SPA  @0 Vegetal @5 39
C07 08  X  FRE  @0 Isotope stable @4 INC @5 69
N21       @1 338
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0439635 INIST
ET : Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions
AU : FELTEN (Daniel); EMMERLING (Christoph)
AF : Department of Soil Science, University Trier, Campus II, Behringstrasse/54296 Trier/Allemagne (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of plant nutrition and soil science : (1999); ISSN 1436-8730; Allemagne; Da. 2012; Vol. 175; No. 5; Pp. 661-670; Bibl. 1 p.1/4
LA : Anglais
EA : Bioenergy is becoming an important option in Global Change mitigation policy world-wide. In agriculture, cultivation of energy crops for biodiesel, biogas, or bioethanol production received considerable attention in the past decades. Beyond this, the cultivation of Miscanthus, used as solid fuel for combustion, may lead to an increase in soil organic matter content compared to other agricultural land use, since C-sequestration potential in soils of Miscanthus crops is high due to, e.g., high amounts of harvest residues. This may indirectly contribute to a reduction of atmospheric CO2 concentration. The objective of the present work was to investigate the development of soil organic carbon and Miscanthus-derived C contents, as well as to estimate carbon stocks in soils cultivated with Miscanthus using 13C-natural-abundance technique. The investigations were carried out in relation to soil depth up to 150cm in a sequence of 2, 5, and 16 y of cultivation relative to a reference soil cultivated with cereals. Amounts of total organic C (TOC) and Miscanthus-derived C (Miscanthus-C) increased with increasing duration of cultivation. For example, TOC increased from 12.8 to 21.3 g Ckg-1 after 16 y of cultivation at the depth of 0-15 cm, whereby the portion of Miscanthus-C reached 5.8 g C kg-1. Also within deeper soil layers down to 60cm depth a significant enhancement of Miscanthus-C was detectable even though TOC contents were not significantly enhanced. At soil depth below 60 cm, no significant differences between treatments were found for Miscanthus-C. Within 16 y of continuous commercial farming, Miscanthus stands accumulated a total of 17.7 Mg C ha-1 derived from Miscanthus residues (C4-C), which is equivalent to 1.1 Mg C4-C ha-1 y-1. The annual surplus might function as CO2 credit within a greenhouse-gas balance. Moreover, the beneficial properties of Miscanthus cultivation combined with a low requirement on fertilization may justify the status of Miscanthus as a sustainable low-input bioenergy crop.
CC : 002A32B; 002A32C02B; 002A32C01B2
FD : Accumulation; Profondeur; Durée; Occupation sol; Analyse isotopique; Champ; Science du sol; Relation sol plante; Carbone Isotope; Plante énergétique; Plante pérenne; Sol; Plante en C4; Miscanthus; Carbone 13; Agriculture commerciale
FG : Gramineae; Monocotyledones; Angiospermae; Spermatophyta; Type C4; Système exploitation agricole; Végétal; Isotope stable
ED : Accumulation; Depth; Duration; Land use; Isotopic analysis; Field; Soil science; Soil plant relation; Carbon Isotopes; Energy crop; Perennial plant; Soils; C-13; Commercial farming
EG : Gramineae; Monocotyledones; Angiospermae; Spermatophyta; C4-Type; Farming system; Vegetals
SD : Acumulación; Profundidad; Duración; Ocupación terreno; Análisis isotópico; Campo; Ciencia del suelo; Relación suelo planta; Carbono Isótopo; Planta energética; Planta perenne; Suelo; C-13; Agricultura comercial
LO : INIST-4185.354000509594030020
ID : 12-0439635

Links to Exploration step

Pascal:12-0439635

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions</title>
<author>
<name sortKey="Felten, Daniel" sort="Felten, Daniel" uniqKey="Felten D" first="Daniel" last="Felten">Daniel Felten</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Soil Science, University Trier, Campus II, Behringstrasse</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmerling, Christoph" sort="Emmerling, Christoph" uniqKey="Emmerling C" first="Christoph" last="Emmerling">Christoph Emmerling</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Soil Science, University Trier, Campus II, Behringstrasse</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0439635</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0439635 INIST</idno>
<idno type="RBID">Pascal:12-0439635</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000262</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions</title>
<author>
<name sortKey="Felten, Daniel" sort="Felten, Daniel" uniqKey="Felten D" first="Daniel" last="Felten">Daniel Felten</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Soil Science, University Trier, Campus II, Behringstrasse</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmerling, Christoph" sort="Emmerling, Christoph" uniqKey="Emmerling C" first="Christoph" last="Emmerling">Christoph Emmerling</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Soil Science, University Trier, Campus II, Behringstrasse</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of plant nutrition and soil science : (1999)</title>
<title level="j" type="abbreviated">J. plant nutr. soil sci. : (1999)</title>
<idno type="ISSN">1436-8730</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of plant nutrition and soil science : (1999)</title>
<title level="j" type="abbreviated">J. plant nutr. soil sci. : (1999)</title>
<idno type="ISSN">1436-8730</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accumulation</term>
<term>C-13</term>
<term>Carbon Isotopes</term>
<term>Commercial farming</term>
<term>Depth</term>
<term>Duration</term>
<term>Energy crop</term>
<term>Field</term>
<term>Isotopic analysis</term>
<term>Land use</term>
<term>Perennial plant</term>
<term>Soil plant relation</term>
<term>Soil science</term>
<term>Soils</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Accumulation</term>
<term>Profondeur</term>
<term>Durée</term>
<term>Occupation sol</term>
<term>Analyse isotopique</term>
<term>Champ</term>
<term>Science du sol</term>
<term>Relation sol plante</term>
<term>Carbone Isotope</term>
<term>Plante énergétique</term>
<term>Plante pérenne</term>
<term>Sol</term>
<term>Plante en C4</term>
<term>Miscanthus</term>
<term>Carbone 13</term>
<term>Agriculture commerciale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bioenergy is becoming an important option in Global Change mitigation policy world-wide. In agriculture, cultivation of energy crops for biodiesel, biogas, or bioethanol production received considerable attention in the past decades. Beyond this, the cultivation of Miscanthus, used as solid fuel for combustion, may lead to an increase in soil organic matter content compared to other agricultural land use, since C-sequestration potential in soils of Miscanthus crops is high due to, e.g., high amounts of harvest residues. This may indirectly contribute to a reduction of atmospheric CO
<sub>2</sub>
concentration. The objective of the present work was to investigate the development of soil organic carbon and Miscanthus-derived C contents, as well as to estimate carbon stocks in soils cultivated with Miscanthus using
<sup>13</sup>
C-natural-abundance technique. The investigations were carried out in relation to soil depth up to 150cm in a sequence of 2, 5, and 16 y of cultivation relative to a reference soil cultivated with cereals. Amounts of total organic C (TOC) and Miscanthus-derived C (Miscanthus-C) increased with increasing duration of cultivation. For example, TOC increased from 12.8 to 21.3 g Ckg-
<sup>1</sup>
after 16 y of cultivation at the depth of 0-15 cm, whereby the portion of Miscanthus-C reached 5.8 g C kg
<sup>-1</sup>
. Also within deeper soil layers down to 60cm depth a significant enhancement of Miscanthus-C was detectable even though TOC contents were not significantly enhanced. At soil depth below 60 cm, no significant differences between treatments were found for Miscanthus-C. Within 16 y of continuous commercial farming, Miscanthus stands accumulated a total of 17.7 Mg C ha-
<sup>1</sup>
derived from Miscanthus residues (C4-C), which is equivalent to 1.1 Mg C4-C ha-
<sup>1</sup>
y
<sup>-1</sup>
. The annual surplus might function as CO
<sub>2</sub>
credit within a greenhouse-gas balance. Moreover, the beneficial properties of Miscanthus cultivation combined with a low requirement on fertilization may justify the status of Miscanthus as a sustainable low-input bioenergy crop.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1436-8730</s0>
</fA01>
<fA03 i2="1">
<s0>J. plant nutr. soil sci. : (1999)</s0>
</fA03>
<fA05>
<s2>175</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FELTEN (Daniel)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMMERLING (Christoph)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Soil Science, University Trier, Campus II, Behringstrasse</s1>
<s2>54296 Trier</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>661-670</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>4185</s2>
<s5>354000509594030020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0439635</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of plant nutrition and soil science : (1999)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Bioenergy is becoming an important option in Global Change mitigation policy world-wide. In agriculture, cultivation of energy crops for biodiesel, biogas, or bioethanol production received considerable attention in the past decades. Beyond this, the cultivation of Miscanthus, used as solid fuel for combustion, may lead to an increase in soil organic matter content compared to other agricultural land use, since C-sequestration potential in soils of Miscanthus crops is high due to, e.g., high amounts of harvest residues. This may indirectly contribute to a reduction of atmospheric CO
<sub>2</sub>
concentration. The objective of the present work was to investigate the development of soil organic carbon and Miscanthus-derived C contents, as well as to estimate carbon stocks in soils cultivated with Miscanthus using
<sup>13</sup>
C-natural-abundance technique. The investigations were carried out in relation to soil depth up to 150cm in a sequence of 2, 5, and 16 y of cultivation relative to a reference soil cultivated with cereals. Amounts of total organic C (TOC) and Miscanthus-derived C (Miscanthus-C) increased with increasing duration of cultivation. For example, TOC increased from 12.8 to 21.3 g Ckg-
<sup>1</sup>
after 16 y of cultivation at the depth of 0-15 cm, whereby the portion of Miscanthus-C reached 5.8 g C kg
<sup>-1</sup>
. Also within deeper soil layers down to 60cm depth a significant enhancement of Miscanthus-C was detectable even though TOC contents were not significantly enhanced. At soil depth below 60 cm, no significant differences between treatments were found for Miscanthus-C. Within 16 y of continuous commercial farming, Miscanthus stands accumulated a total of 17.7 Mg C ha-
<sup>1</sup>
derived from Miscanthus residues (C4-C), which is equivalent to 1.1 Mg C4-C ha-
<sup>1</sup>
y
<sup>-1</sup>
. The annual surplus might function as CO
<sub>2</sub>
credit within a greenhouse-gas balance. Moreover, the beneficial properties of Miscanthus cultivation combined with a low requirement on fertilization may justify the status of Miscanthus as a sustainable low-input bioenergy crop.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A32C02B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002A32C01B2</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Accumulation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Accumulation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Acumulación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Profondeur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Depth</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Profundidad</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Durée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Duration</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Duración</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Occupation sol</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Land use</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Ocupación terreno</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Analyse isotopique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Isotopic analysis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Análisis isotópico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Champ</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Field</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Campo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Science du sol</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Soil science</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ciencia del suelo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Relation sol plante</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Soil plant relation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Relación suelo planta</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Carbone Isotope</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Carbon Isotopes</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Carbono Isótopo</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Plante énergétique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Energy crop</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Planta energética</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Plante pérenne</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Perennial plant</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Planta perenne</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Sol</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Soils</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Suelo</s0>
<s2>NT</s2>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Plante en C4</s0>
<s4>INC</s4>
<s5>70</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Miscanthus</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Carbone 13</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>C-13</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>C-13</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Agriculture commerciale</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Commercial farming</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Agricultura comercial</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Gramineae</s0>
<s2>NS</s2>
<s5>31</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Gramineae</s0>
<s2>NS</s2>
<s5>31</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Gramineae</s0>
<s2>NS</s2>
<s5>31</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Monocotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Type C4</s0>
<s5>32</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>C4-Type</s0>
<s5>32</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Tipo C4</s0>
<s5>32</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Système exploitation agricole</s0>
<s5>33</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Farming system</s0>
<s5>33</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Sistema de explotación agrícola</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Végétal</s0>
<s5>39</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Vegetals</s0>
<s5>39</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Vegetal</s0>
<s5>39</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Isotope stable</s0>
<s4>INC</s4>
<s5>69</s5>
</fC07>
<fN21>
<s1>338</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0439635 INIST</NO>
<ET>Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions</ET>
<AU>FELTEN (Daniel); EMMERLING (Christoph)</AU>
<AF>Department of Soil Science, University Trier, Campus II, Behringstrasse/54296 Trier/Allemagne (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of plant nutrition and soil science : (1999); ISSN 1436-8730; Allemagne; Da. 2012; Vol. 175; No. 5; Pp. 661-670; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>Bioenergy is becoming an important option in Global Change mitigation policy world-wide. In agriculture, cultivation of energy crops for biodiesel, biogas, or bioethanol production received considerable attention in the past decades. Beyond this, the cultivation of Miscanthus, used as solid fuel for combustion, may lead to an increase in soil organic matter content compared to other agricultural land use, since C-sequestration potential in soils of Miscanthus crops is high due to, e.g., high amounts of harvest residues. This may indirectly contribute to a reduction of atmospheric CO
<sub>2</sub>
concentration. The objective of the present work was to investigate the development of soil organic carbon and Miscanthus-derived C contents, as well as to estimate carbon stocks in soils cultivated with Miscanthus using
<sup>13</sup>
C-natural-abundance technique. The investigations were carried out in relation to soil depth up to 150cm in a sequence of 2, 5, and 16 y of cultivation relative to a reference soil cultivated with cereals. Amounts of total organic C (TOC) and Miscanthus-derived C (Miscanthus-C) increased with increasing duration of cultivation. For example, TOC increased from 12.8 to 21.3 g Ckg-
<sup>1</sup>
after 16 y of cultivation at the depth of 0-15 cm, whereby the portion of Miscanthus-C reached 5.8 g C kg
<sup>-1</sup>
. Also within deeper soil layers down to 60cm depth a significant enhancement of Miscanthus-C was detectable even though TOC contents were not significantly enhanced. At soil depth below 60 cm, no significant differences between treatments were found for Miscanthus-C. Within 16 y of continuous commercial farming, Miscanthus stands accumulated a total of 17.7 Mg C ha-
<sup>1</sup>
derived from Miscanthus residues (C4-C), which is equivalent to 1.1 Mg C4-C ha-
<sup>1</sup>
y
<sup>-1</sup>
. The annual surplus might function as CO
<sub>2</sub>
credit within a greenhouse-gas balance. Moreover, the beneficial properties of Miscanthus cultivation combined with a low requirement on fertilization may justify the status of Miscanthus as a sustainable low-input bioenergy crop.</EA>
<CC>002A32B; 002A32C02B; 002A32C01B2</CC>
<FD>Accumulation; Profondeur; Durée; Occupation sol; Analyse isotopique; Champ; Science du sol; Relation sol plante; Carbone Isotope; Plante énergétique; Plante pérenne; Sol; Plante en C4; Miscanthus; Carbone 13; Agriculture commerciale</FD>
<FG>Gramineae; Monocotyledones; Angiospermae; Spermatophyta; Type C4; Système exploitation agricole; Végétal; Isotope stable</FG>
<ED>Accumulation; Depth; Duration; Land use; Isotopic analysis; Field; Soil science; Soil plant relation; Carbon Isotopes; Energy crop; Perennial plant; Soils; C-13; Commercial farming</ED>
<EG>Gramineae; Monocotyledones; Angiospermae; Spermatophyta; C4-Type; Farming system; Vegetals</EG>
<SD>Acumulación; Profundidad; Duración; Ocupación terreno; Análisis isotópico; Campo; Ciencia del suelo; Relación suelo planta; Carbono Isótopo; Planta energética; Planta perenne; Suelo; C-13; Agricultura comercial</SD>
<LO>INIST-4185.354000509594030020</LO>
<ID>12-0439635</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000262 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000262 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0439635
   |texte=   Accumulation of Miscanthus-derived carbon in soils in relation to soil depth and duration of land use under commercial farming conditions
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024