Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners

Identifieur interne : 000B24 ( PascalFrancis/Checkpoint ); précédent : 000B23; suivant : 000B25

Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners

Auteurs : Ray E. Ferrell [États-Unis] ; Per Aagaard [Norvège] ; Johan Forsman [États-Unis] ; Lea Greenwood [États-Unis] ; ZUOPING ZHENG [Norvège]

Source :

RBID : Pascal:02-0235795

Descripteurs français

English descriptors

Abstract

PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10-10 m2 s-1 and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10-10 m2 s- Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0235795

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners</title>
<author>
<name sortKey="Ferrell, Ray E" sort="Ferrell, Ray E" uniqKey="Ferrell R" first="Ray E." last="Ferrell">Ray E. Ferrell</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aagaard, Per" sort="Aagaard, Per" uniqKey="Aagaard P" first="Per" last="Aagaard">Per Aagaard</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forsman, Johan" sort="Forsman, Johan" uniqKey="Forsman J" first="Johan" last="Forsman">Johan Forsman</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Greenwood, Lea" sort="Greenwood, Lea" uniqKey="Greenwood L" first="Lea" last="Greenwood">Lea Greenwood</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zuoping Zheng" sort="Zuoping Zheng" uniqKey="Zuoping Zheng" last="Zuoping Zheng">ZUOPING ZHENG</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0235795</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0235795 INIST</idno>
<idno type="RBID">Pascal:02-0235795</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000D54</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000182</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000B24</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000B24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners</title>
<author>
<name sortKey="Ferrell, Ray E" sort="Ferrell, Ray E" uniqKey="Ferrell R" first="Ray E." last="Ferrell">Ray E. Ferrell</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aagaard, Per" sort="Aagaard, Per" uniqKey="Aagaard P" first="Per" last="Aagaard">Per Aagaard</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forsman, Johan" sort="Forsman, Johan" uniqKey="Forsman J" first="Johan" last="Forsman">Johan Forsman</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Greenwood, Lea" sort="Greenwood, Lea" uniqKey="Greenwood L" first="Lea" last="Greenwood">Lea Greenwood</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zuoping Zheng" sort="Zuoping Zheng" uniqKey="Zuoping Zheng" last="Zuoping Zheng">ZUOPING ZHENG</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
<placeName>
<settlement type="city">Oslo</settlement>
<region nuts="2">Østlandet</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied clay science</title>
<title level="j" type="abbreviated">Appl. clay sci.</title>
<idno type="ISSN">0169-1317</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied clay science</title>
<title level="j" type="abbreviated">Appl. clay sci.</title>
<idno type="ISSN">0169-1317</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>adsorption</term>
<term>cation exchange capacity</term>
<term>clay</term>
<term>compactness</term>
<term>density</term>
<term>diffusion</term>
<term>diffusivity</term>
<term>heavy metals</term>
<term>ion exchange</term>
<term>lead</term>
<term>migration of elements</term>
<term>models</term>
<term>pollutants</term>
<term>pollution</term>
<term>porosity</term>
<term>prediction</term>
<term>retention</term>
<term>simulation</term>
<term>thickness</term>
<term>transport</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modèle</term>
<term>Transport</term>
<term>Prévision</term>
<term>Polluant</term>
<term>Pollution</term>
<term>Rétention</term>
<term>Métal lourd</term>
<term>Plomb</term>
<term>Argile</term>
<term>Simulation</term>
<term>Diffusivité</term>
<term>Epaisseur</term>
<term>Migration élément</term>
<term>Diffusion</term>
<term>Adsorption</term>
<term>Echange ion</term>
<term>Capacité échange cation</term>
<term>Porosité</term>
<term>Compacité</term>
<term>Densité</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Polluant</term>
<term>Pollution</term>
<term>Métal lourd</term>
<term>Plomb</term>
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-1</sup>
and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-</sup>
Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-1317</s0>
</fA01>
<fA02 i1="01">
<s0>ACLSER</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. clay sci.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Clay barriers and waste management</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>FERRELL (Ray E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AAGAARD (Per)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FORSMAN (Johan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GREENWOOD (Lea)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZUOPING ZHENG</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CZURDA (Kurt A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>WAGNER (Jean-Frank)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Geology and Geophysics, Louisiana State University</s1>
<s2>Baton Rouge, LA 70803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Geology, University of Oslo</s1>
<s2>Oslo</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Department of Applied Geology, University of Karlsruhe, Kaiserstr. 12</s1>
<s2>76128 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Geology Department, Faculty VI, University of Trier, Behringstrasse</s1>
<s2>54286 Trier</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>59-66</s1>
<s7>2</s7>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20859</s2>
<s5>354000100846800060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0235795</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied clay science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>PHREEQC, a geochemical transport model, is used to simulate diffusive transport of Pb through a 10-cm-thick clay liner. The results are compared to those of Roehl and Czurda [Applied Clay Science 12 (1998) 387] who studied Pb migration by diffusion in a carefully monitored laboratory experiment. The computer simulation accounts for effects due to adsorption by ion exchange, changes in CEC, variable ion selectivity, and porosity or compacted density. It facilitates evaluation of changes in the diffusion coefficient and solution input parameters. The effective Pb diffusion coefficient determined for the simulation is 3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-1</sup>
and for the 520-day experiment of Roehl and Czurda it is 2.3 X 10
<sup>-10</sup>
m
<sup>2</sup>
s
<sup>-</sup>
Differences in the retardation factors (23.6 and 503, respectively) indicate that the model does not account for all of the adsorption mechanisms suggested by the experimental investigation. Thus, less Pb is retained and the liner is predicted to fail more rapidly than the actual results indicate. Models have great flexibility, but need to be verified by field data before they can be applied to specific waste site conditions.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>226B04</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>226B01</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001E01O04</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001E01O01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>models</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Prévision</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>prediction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Previsión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Polluant</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>pollutants</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Contaminante</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>pollution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Polución</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Rétention</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>retention</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Métal lourd</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>heavy metals</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Metal pesado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Plomb</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>lead</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Plomo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Argile</s0>
<s2>NV</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>clay</s0>
<s2>NV</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Arcilla</s0>
<s2>NV</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>simulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Diffusivité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>diffusivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Epaisseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>thickness</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Espesor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Migration élément</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>migration of elements</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Migración elementos</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Diffusion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>diffusion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Difusión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Adsorption</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>adsorption</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Adsorción</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Echange ion</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>ion exchange</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Cambio iónico</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Capacité échange cation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>cation exchange capacity</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Capacidad intercambio catión</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Porosité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>porosity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Porosidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Compacité</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>compactness</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Compacidad</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Densité</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>density</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Densidad</s0>
<s5>25</s5>
</fC03>
<fC06>
<s0>ILS</s0>
<s0>TAS</s0>
</fC06>
<fC07 i1="01" i2="2" l="FRE">
<s0>Roche clastique</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>clastic rocks</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Roca clástica</s0>
<s2>NV</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Roche sédimentaire</s0>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>sedimentary rocks</s0>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Roca sedimentaria</s0>
</fC07>
<fN21>
<s1>140</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Norvège</li>
<li>États-Unis</li>
</country>
<region>
<li>Louisiane</li>
<li>Østlandet</li>
</region>
<settlement>
<li>Oslo</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Louisiane">
<name sortKey="Ferrell, Ray E" sort="Ferrell, Ray E" uniqKey="Ferrell R" first="Ray E." last="Ferrell">Ray E. Ferrell</name>
</region>
<name sortKey="Forsman, Johan" sort="Forsman, Johan" uniqKey="Forsman J" first="Johan" last="Forsman">Johan Forsman</name>
<name sortKey="Greenwood, Lea" sort="Greenwood, Lea" uniqKey="Greenwood L" first="Lea" last="Greenwood">Lea Greenwood</name>
</country>
<country name="Norvège">
<region name="Østlandet">
<name sortKey="Aagaard, Per" sort="Aagaard, Per" uniqKey="Aagaard P" first="Per" last="Aagaard">Per Aagaard</name>
</region>
<name sortKey="Zuoping Zheng" sort="Zuoping Zheng" uniqKey="Zuoping Zheng" last="Zuoping Zheng">ZUOPING ZHENG</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B24 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000B24 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:02-0235795
   |texte=   Application of a geochemical transport model to predict heavy metal retention (Pb) by clay liners
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024