Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer

Identifieur interne : 001B13 ( Istex/Corpus ); précédent : 001B12; suivant : 001B14

Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer

Auteurs : Timo Vihma ; Milla M. Johansson ; Jouko Launiainen

Source :

RBID : ISTEX:B9D831A83FA76D2B7B4A726EFE7E10F877674CCC

Abstract

The radiative and turbulent heat fluxes between the snow‐covered sea ice and the atmosphere were analyzed on the basis of observations during the Ice Station Polarstern (ISPOL) in the western Weddell Sea from 28 November 2004 to 2 January 2005. The net heat flux to the snowpack was 3 ± 2 W m−2 (mean ± standard deviation; defined positive toward snow), consisting of the net shortwave radiation (52 ± 8 W m−2), net longwave radiation (−29 ± 4 W m−2), latent heat flux (−14 ± 5 W m−2), and sensible heat flux (−6 ± 5 W m−2). The snowpack receives heat at daytime while releases heat every night. Snow thinning was due to approximately equal contributions of the increase of snow density, melt, and evaporation. The surface albedo only decreased from 0.9 to 0.8. During a case of cold air advection, the sensible heat flux was even below −50 W m−2. At night, the snow surface temperature was strongly controlled by the incoming longwave radiation. The diurnal cycle in the downward solar radiation drove diurnal cycles in 14 other variables. Comparisons against observations from the Arctic sea ice in summer indicated that at ISPOL the air was colder, surface albedo was higher, and a larger portion of the absorbed solar radiation was returned to the atmosphere via turbulent heat fluxes. The limited melt allowed larger diurnal cycles. Due to regional differences in atmospheric circulation and ice conditions, the ISPOL results cannot be fully generalized for the entire Antarctic sea ice zone.

Url:
DOI: 10.1029/2008JC004995

Links to Exploration step

ISTEX:B9D831A83FA76D2B7B4A726EFE7E10F877674CCC

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
<author>
<name sortKey="Vihma, Timo" sort="Vihma, Timo" uniqKey="Vihma T" first="Timo" last="Vihma">Timo Vihma</name>
<affiliation>
<mods:affiliation>Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: (timo.vihma@fmi.fi)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johansson, Milla M" sort="Johansson, Milla M" uniqKey="Johansson M" first="Milla M." last="Johansson">Milla M. Johansson</name>
<affiliation>
<mods:affiliation>Finnish Institute of Marine Research, Helsinki, Finland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Marine Research, Finnish Meteorological Institute, Helsinki, Finland.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Launiainen, Jouko" sort="Launiainen, Jouko" uniqKey="Launiainen J" first="Jouko" last="Launiainen">Jouko Launiainen</name>
<affiliation>
<mods:affiliation>Finnish Institute of Marine Research, Helsinki, Finland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Retired.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B9D831A83FA76D2B7B4A726EFE7E10F877674CCC</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1029/2008JC004995</idno>
<idno type="url">https://api.istex.fr/document/B9D831A83FA76D2B7B4A726EFE7E10F877674CCC/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001B13</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001B13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
<author>
<name sortKey="Vihma, Timo" sort="Vihma, Timo" uniqKey="Vihma T" first="Timo" last="Vihma">Timo Vihma</name>
<affiliation>
<mods:affiliation>Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: (timo.vihma@fmi.fi)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johansson, Milla M" sort="Johansson, Milla M" uniqKey="Johansson M" first="Milla M." last="Johansson">Milla M. Johansson</name>
<affiliation>
<mods:affiliation>Finnish Institute of Marine Research, Helsinki, Finland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Marine Research, Finnish Meteorological Institute, Helsinki, Finland.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Launiainen, Jouko" sort="Launiainen, Jouko" uniqKey="Launiainen J" first="Jouko" last="Launiainen">Jouko Launiainen</name>
<affiliation>
<mods:affiliation>Finnish Institute of Marine Research, Helsinki, Finland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Retired.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2009-04">2009-04</date>
<biblScope unit="volume">114</biblScope>
<biblScope unit="issue">C4</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">B9D831A83FA76D2B7B4A726EFE7E10F877674CCC</idno>
<idno type="DOI">10.1029/2008JC004995</idno>
<idno type="ArticleID">2008JC004995</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The radiative and turbulent heat fluxes between the snow‐covered sea ice and the atmosphere were analyzed on the basis of observations during the Ice Station Polarstern (ISPOL) in the western Weddell Sea from 28 November 2004 to 2 January 2005. The net heat flux to the snowpack was 3 ± 2 W m−2 (mean ± standard deviation; defined positive toward snow), consisting of the net shortwave radiation (52 ± 8 W m−2), net longwave radiation (−29 ± 4 W m−2), latent heat flux (−14 ± 5 W m−2), and sensible heat flux (−6 ± 5 W m−2). The snowpack receives heat at daytime while releases heat every night. Snow thinning was due to approximately equal contributions of the increase of snow density, melt, and evaporation. The surface albedo only decreased from 0.9 to 0.8. During a case of cold air advection, the sensible heat flux was even below −50 W m−2. At night, the snow surface temperature was strongly controlled by the incoming longwave radiation. The diurnal cycle in the downward solar radiation drove diurnal cycles in 14 other variables. Comparisons against observations from the Arctic sea ice in summer indicated that at ISPOL the air was colder, surface albedo was higher, and a larger portion of the absorbed solar radiation was returned to the atmosphere via turbulent heat fluxes. The limited melt allowed larger diurnal cycles. Due to regional differences in atmospheric circulation and ice conditions, the ISPOL results cannot be fully generalized for the entire Antarctic sea ice zone.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Timo Vihma</name>
<affiliations>
<json:string>Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland</json:string>
<json:string>E-mail: (timo.vihma@fmi.fi)</json:string>
</affiliations>
</json:item>
<json:item>
<name>Milla M. Johansson</name>
<affiliations>
<json:string>Finnish Institute of Marine Research, Helsinki, Finland</json:string>
<json:string>Now at Marine Research, Finnish Meteorological Institute, Helsinki, Finland.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jouko Launiainen</name>
<affiliations>
<json:string>Finnish Institute of Marine Research, Helsinki, Finland</json:string>
<json:string>Retired.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>surface heat balance</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sea ice</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Antarctic</value>
</json:item>
</subject>
<articleId>
<json:string>2008JC004995</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The radiative and turbulent heat fluxes between the snow‐covered sea ice and the atmosphere were analyzed on the basis of observations during the Ice Station Polarstern (ISPOL) in the western Weddell Sea from 28 November 2004 to 2 January 2005. The net heat flux to the snowpack was 3 ± 2 W m−2 (mean ± standard deviation; defined positive toward snow), consisting of the net shortwave radiation (52 ± 8 W m−2), net longwave radiation (−29 ± 4 W m−2), latent heat flux (−14 ± 5 W m−2), and sensible heat flux (−6 ± 5 W m−2). The snowpack receives heat at daytime while releases heat every night. Snow thinning was due to approximately equal contributions of the increase of snow density, melt, and evaporation. The surface albedo only decreased from 0.9 to 0.8. During a case of cold air advection, the sensible heat flux was even below −50 W m−2. At night, the snow surface temperature was strongly controlled by the incoming longwave radiation. The diurnal cycle in the downward solar radiation drove diurnal cycles in 14 other variables. Comparisons against observations from the Arctic sea ice in summer indicated that at ISPOL the air was colder, surface albedo was higher, and a larger portion of the absorbed solar radiation was returned to the atmosphere via turbulent heat fluxes. The limited melt allowed larger diurnal cycles. Due to regional differences in atmospheric circulation and ice conditions, the ISPOL results cannot be fully generalized for the entire Antarctic sea ice zone.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1497</abstractCharCount>
<pdfWordCount>12095</pdfWordCount>
<pdfCharCount>67351</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>251</abstractWordCount>
</qualityIndicators>
<title>Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>E. L. Andreas</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>746</last>
<first>736</first>
</pages>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>Heat and moisture advection over Antarctic Sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. L. Andreas</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>184</last>
<first>159</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. L. Andreas</name>
</json:item>
<json:item>
<name>A. P. Makshtas</name>
</json:item>
</author>
<host>
<volume>90</volume>
<pages>
<last>7212</last>
<first>7199</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Energy exchange over Antarctic sea ice in the spring</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. L. Andreas</name>
</json:item>
<json:item>
<name>K. J. Claffey</name>
</json:item>
<json:item>
<name>A. P. Makshtas</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>486</last>
<first>459</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Low‐level atmospheric jets and inversions over the western Weddell Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. L. Andreas</name>
</json:item>
<json:item>
<name>R. E. Jordan</name>
</json:item>
<json:item>
<name>A. P. Makshtas</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>624</last>
<first>611</first>
</pages>
<author></author>
<title>J. Hydrometeorol.</title>
</host>
<title>Simulations of snow, ice, and near‐surface atmospheric processes on ice Station Weddell</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. L. Andreas</name>
</json:item>
<json:item>
<name>R. E. Jordan</name>
</json:item>
<json:item>
<name>A. P. Makshtas</name>
</json:item>
</author>
<host>
<volume>114</volume>
<pages>
<last>460</last>
<first>439</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Parameterizing turbulent exchange over sea ice: The Ice Station Weddell results</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Bareiss</name>
</json:item>
<json:item>
<name>K. Görgen</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>932</last>
<first>918</first>
</pages>
<author></author>
<title>Deep Sea Res. II</title>
</host>
<title>ISPOL weather conditions in the context of long‐term climate variability in the north‐western Weddell Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. E. Brandt</name>
</json:item>
<json:item>
<name>S. G. Warren</name>
</json:item>
<json:item>
<name>A. P. Worby</name>
</json:item>
<json:item>
<name>T. C. Grenfell</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>3622</last>
<first>3606</first>
</pages>
<author></author>
<title>J. Clim.</title>
</host>
<title>Surface albedo of the Antarctic Sea ice zone</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Brümmer</name>
</json:item>
<json:item>
<name>D. Schröder</name>
</json:item>
<json:item>
<name>J. Launiainen</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>A.‐S. Smedman</name>
</json:item>
<json:item>
<name>M. Magnusson</name>
</json:item>
</author>
<host>
<volume>107</volume>
<issue>C8</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Temporal and spatial variability of surface fluxes over the ice edge zone in the northern Baltic Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. W. Fairall</name>
</json:item>
<json:item>
<name>P. O. G. Persson</name>
</json:item>
<json:item>
<name>E. F. Bradley</name>
</json:item>
<json:item>
<name>R. E. Payne</name>
</json:item>
<json:item>
<name>S. P. Anderson</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>1242</last>
<first>1229</first>
</pages>
<author></author>
<title>J. Atmos. Ocean. Technol.</title>
</host>
<title>A new look at calibration and use of Eppley precision infrared radiometers. part I: Theory and application</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. A. Grachev</name>
</json:item>
<json:item>
<name>C. W. Fairall</name>
</json:item>
<json:item>
<name>P. O. G. Persson</name>
</json:item>
<json:item>
<name>E. L. Andreas</name>
</json:item>
<json:item>
<name>P. S. Guest</name>
</json:item>
</author>
<host>
<volume>116</volume>
<pages>
<last>235</last>
<first>201</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Stable boundary‐layer scaling regimes: The Sheba data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Granskog</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>R. Pirazzini</name>
</json:item>
<json:item>
<name>B. Cheng</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>127</last>
<first>119</first>
</pages>
<author></author>
<title>J. Glaciol.</title>
</host>
<title>Superimposed ice formation and surface fluxes on sea ice during the spring melt‐freeze period in the Baltic Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. C. Grenfell</name>
</json:item>
<json:item>
<name>D. K. Perovich</name>
</json:item>
</author>
<host>
<volume>109</volume>
<issue>C1</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Seasonal and spatial evolution of albedo in a snow‐ice‐land‐ocean environment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. S. Guest</name>
</json:item>
</author>
<host>
<volume>112</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Measuring turbulent heat fluxes over leads using kites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Haas</name>
</json:item>
</author>
<host>
<pages>
<last>111</last>
<first>82</first>
</pages>
<author></author>
<title>Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology</title>
</host>
<title>Dynamics versus thermodynamics</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>M. Nicolaus</name>
</json:item>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>A. P. Worby</name>
</json:item>
<json:item>
<name>D. Flinspach</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>974</last>
<first>963</first>
</pages>
<author></author>
<title>Deep Sea Res. II</title>
</host>
<title>Sea ice and snow thickness and physical properties of an ice floe in the western Weddell Sea and their changes during spring warming</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Heil</name>
</json:item>
<json:item>
<name>J. K. Hutchings</name>
</json:item>
<json:item>
<name>A. P. Worby</name>
</json:item>
<json:item>
<name>M. Johansson</name>
</json:item>
<json:item>
<name>J. Launiainen</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>W. D. Hibler III</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>962</last>
<first>943</first>
</pages>
<author></author>
<title>Deep Sea Res. II</title>
</host>
<title>Tidal forcing on sea‐ice drift and deformation in the western Weddell Sea in early austral summer, 2004</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. H. Hellmer</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>G. S. Dieckmann</name>
</json:item>
<json:item>
<name>M. Schröder</name>
</json:item>
</author>
<host>
<volume>87</volume>
<pages>
<last>184</last>
<first>173</first>
</pages>
<author></author>
<title>Eos Trans. AGU</title>
</host>
<title>Sea ice feedbacks observed in the western Weddell Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. H. Hellmer</name>
</json:item>
<json:item>
<name>M. Schröder</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>G. S. Dieckmann</name>
</json:item>
<json:item>
<name>M. Spindler</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>917</last>
<first>913</first>
</pages>
<author></author>
<title>Deep Sea Res. II</title>
</host>
<title>The ISPOL drift experiment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>U. Högström</name>
</json:item>
</author>
<host>
<volume>42</volume>
<pages>
<last>78</last>
<first>55</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Non‐dimensional wind and temperature profiles in the atmospheric surface layer: A re‐evaluation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. A. M. Holtslag</name>
</json:item>
<json:item>
<name>H. A. R. de Bruin</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>704</last>
<first>689</first>
</pages>
<author></author>
<title>J. Appl. Meteorol.</title>
</host>
<title>Applied modelling of the nighttime surface energy balance over land</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. C. King</name>
</json:item>
<json:item>
<name>T. A. Lachlan‐Cope</name>
</json:item>
<json:item>
<name>R. S. Ladkin</name>
</json:item>
<json:item>
<name>A. Weiss</name>
</json:item>
</author>
<host>
<volume>127</volume>
<pages>
<last>428</last>
<first>413</first>
</pages>
<issue>3</issue>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Airborne measurements in the stable boundary layer over the Larsen Ice Shelf, Antarctica</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Kohsiek</name>
</json:item>
<json:item>
<name>C. Liebethal</name>
</json:item>
<json:item>
<name>T. Foken</name>
</json:item>
<json:item>
<name>R. Vogt</name>
</json:item>
<json:item>
<name>S. P. Oncley</name>
</json:item>
<json:item>
<name>C. Bernhofer</name>
</json:item>
<json:item>
<name>H. A. R. De Bruin</name>
</json:item>
</author>
<host>
<volume>123</volume>
<pages>
<last>75</last>
<first>55</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>The Energy Balance Experiment EBEX‐2000: part III. Behaviour and quality of the radiation measurements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Kottmeier</name>
</json:item>
<json:item>
<name>D. Engelbart</name>
</json:item>
</author>
<host>
<volume>60</volume>
<pages>
<last>234</last>
<first>207</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Generation and atmospheric heat exchange of coastal polynyas in the Weddell Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Launiainen</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>179</last>
<first>165</first>
</pages>
<author></author>
<title>Bound. Layer Meteorol.</title>
</host>
<title>Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux‐profile studies</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Launiainen</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>15</last>
<first>1</first>
</pages>
<author></author>
<title>Environ. Software</title>
</host>
<title>Derivation of turbulent surface fluxes ‐ an iterative flux‐profile method allowing arbitrary observing heights</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Launiainen</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>419</last>
<first>399</first>
</pages>
<author></author>
<title>The Polar Oceans and Their Role in Shaping the Global Environment, Nansen Centennial Volume</title>
</host>
<title>On the surface heat fluxes in the Weddell Sea</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Air‐Sea Interaction Experiment in the Weddell Sea. Argos‐Buoy Report from FINNARP‐5/89, 1990–1991</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Launiainen</name>
</json:item>
<json:item>
<name>M. Johansson</name>
</json:item>
<json:item>
<name>P. Kosloff</name>
</json:item>
</author>
<host>
<pages>
<last>66</last>
<first>53</first>
</pages>
<author></author>
<title>The Expeditions ANTARKTIS‐XXII/1 and XXII/2 of the Research Vessel Polarstern in 2004/2005</title>
</host>
<title>Meteorological conditions and surface fluxes and energy balance during ISPOL</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Mahrt</name>
</json:item>
</author>
<host>
<pages>
<last>305</last>
<first>298</first>
</pages>
<author></author>
<title>Encyclopedia of Atmospheric Sciences</title>
</host>
<title>Stably stratified boundary layer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. G. Martinson</name>
</json:item>
<json:item>
<name>R. A. Iannuzzi</name>
</json:item>
</author>
<host>
<volume>74</volume>
<author></author>
<title>Antarctic Sea Ice: Physical Processes, Interactions and Variability</title>
</host>
<title>Antarctic ocean‐ice interaction: Implications from ocean bulk property distributions in the Weddell Gyre</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. G. McPhee</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>1097</last>
<first>1075</first>
</pages>
<author></author>
<title>Deep Sea Res. II</title>
</host>
<title>Physics of early summer ice/ocean exchanges in the western Weddell Sea during ISPOL</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Nicolaus</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>J. Bareiss</name>
</json:item>
<json:item>
<name>S. Willmes</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>153</last>
<first>147</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>A model study of differences of snow thinning on Arctic and Antarctic first‐year sea ice during spring and summer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Niros</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>J. Launiainen</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>87</last>
<first>59</first>
</pages>
<author></author>
<title>Geophysica</title>
</host>
<title>Marine meteorological conditions and air‐sea exchange processes over the Baltic Sea in 1990s</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. L. Parkinson</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>400</last>
<first>387</first>
</pages>
<author></author>
<title>Antarctic Sci.</title>
</host>
<title>Southern Ocean sea ice and its wider linkages: Insights revealed from models and observations</title>
</json:item>
<json:item>
<host>
<author></author>
<title>The optical properties of sea ice</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P. O. G. Persson</name>
</json:item>
<json:item>
<name>C. W. Fairall</name>
</json:item>
<json:item>
<name>E. L. Andreas</name>
</json:item>
<json:item>
<name>P. S. Guest</name>
</json:item>
<json:item>
<name>D. K. Perovich</name>
</json:item>
</author>
<host>
<volume>107</volume>
<issue>C10</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Measurements near the atmospheric surface flux group tower at SHEBA: Near‐surface conditions and surface energy budget</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Pirazzini</name>
</json:item>
</author>
<host>
<volume>109</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Surface albedo measurements over Antarctic sites in summer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Pirazzini</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>M. A. Granskog</name>
</json:item>
<json:item>
<name>B. Cheng</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>14</last>
<first>7</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Radiation measurements at the German Antarctic Station Neumayer 1982–1992</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>G. J. Steeneveld</name>
</json:item>
<json:item>
<name>T. Mauritsen</name>
</json:item>
<json:item>
<name>E. I. F. de Bruijn</name>
</json:item>
<json:item>
<name>J. Vila‐Guerau de Arellano</name>
</json:item>
<json:item>
<name>G. Svensson</name>
</json:item>
<json:item>
<name>A. A. M. Holtslag</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>887</last>
<first>869</first>
</pages>
<author></author>
<title>J. Appl. Meteorol. Climatol.</title>
</host>
<title>Evaluation of limited‐area models for the representation of the diurnal cycle and contrasting nights in CASES‐99</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Steer</name>
</json:item>
<json:item>
<name>A. Worby</name>
</json:item>
<json:item>
<name>P. Heil</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>942</last>
<first>933</first>
</pages>
<author></author>
<title>Deep Sea Res. II</title>
</host>
<title>Observed changes in sea‐ice floe size distribution during early summer in the western Weddell Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Stössel</name>
</json:item>
<json:item>
<name>W.‐G. Cheon</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
</author>
<host>
<volume>113</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Interactive momentum flux forcing over sea ice in a global ocean GCM</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Thomas, D. N., and G. S. Dieckmann (Eds.) (2003), Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology, 402 pp., Blackwell, Malden, Mass.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Tietäväinen</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
</author>
<host>
<volume>28</volume>
<pages>
<last>1995</last>
<first>1977</first>
</pages>
<author></author>
<title>Int. J. Climatol.</title>
</host>
<title>Atmospheric moisture budget over Antarctica and Southern Ocean on the basis of ERA‐40 reanalysis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Tisler</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>G. Müller</name>
</json:item>
<json:item>
<name>B. Brümmer</name>
</json:item>
</author>
<host>
<volume>60A</volume>
<pages>
<last>788</last>
<first>775</first>
</pages>
<author></author>
<title>Tellus</title>
</host>
<title>Modelling of warm‐air advection over Arctic sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.‐L. Tison</name>
</json:item>
<json:item>
<name>A. Worby</name>
</json:item>
<json:item>
<name>B. Delille</name>
</json:item>
<json:item>
<name>F. Brabant</name>
</json:item>
<json:item>
<name>S. Papadimitriou</name>
</json:item>
<json:item>
<name>D. Thomas</name>
</json:item>
<json:item>
<name>J. de Jong</name>
</json:item>
<json:item>
<name>D. Lannuzel</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>1097</last>
<first>1075</first>
</pages>
<author></author>
<title>Deep‐Sea Res. II</title>
</host>
<title>Temporal evolution of decaying summer first year sea ice in the western Weddell Sea, Antarctica</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Tjernström</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>36</last>
<first>5</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE‐2001)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Tjernström</name>
</json:item>
</author>
<host>
<volume>64</volume>
<pages>
<last>3986</last>
<first>3970</first>
</pages>
<author></author>
<title>J. Atmos. Sci.</title>
</host>
<title>Is there a diurnal cycle in the summer cloud‐capped Arctic boundary layer?</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Valkonen</name>
</json:item>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>M. Doble</name>
</json:item>
</author>
<host>
<volume>136</volume>
<pages>
<last>1474</last>
<first>1457</first>
</pages>
<author></author>
<title>Mon. Weather Rev.</title>
</host>
<title>Mesoscale modeling of the atmosphere over Antarctic sea ice: A late‐autumn case study</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Van den Broeke</name>
</json:item>
<json:item>
<name>C. Reijmer</name>
</json:item>
<json:item>
<name>R. Van de Wal</name>
</json:item>
</author>
<host>
<volume>109</volume>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Surface radiation balance in Antarctica as measured with automatic weather stations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. J. H. Van de Wiel</name>
</json:item>
<json:item>
<name>A. F. Moene</name>
</json:item>
<json:item>
<name>G. J. Steeneveld</name>
</json:item>
<json:item>
<name>O. K. Hartogensis</name>
</json:item>
<json:item>
<name>A. A. M. Holtslag</name>
</json:item>
</author>
<host>
<volume>79</volume>
<pages>
<last>274</last>
<first>251</first>
</pages>
<author></author>
<title>Flow Turbul. Combust.</title>
</host>
<title>Predicting the collapse of turbulence in stably stratified boundary layers</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>J. Launiainen</name>
</json:item>
<json:item>
<name>J. Uotila</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>18,296</last>
<first>18,279</first>
</pages>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Weddell Sea ice drift: Kinematics and wind forcing</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>J. Uotila</name>
</json:item>
<json:item>
<name>B. Cheng</name>
</json:item>
<json:item>
<name>J. Launiainen</name>
</json:item>
</author>
<host>
<volume>107</volume>
<issue>C2</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>Surface heat budget over the Weddell Sea: Buoy results and comparisons with large‐scale models</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Vihma</name>
</json:item>
<json:item>
<name>C. Lüpkes</name>
</json:item>
<json:item>
<name>J. Hartmann</name>
</json:item>
<json:item>
<name>H. Savijärvi</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>300</last>
<first>275</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Observations and modelling of cold‐air advection over Arctic sea ice in winter</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>J. Bareiss</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>M. Nicolaus</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>302</last>
<first>297</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>The importance of diurnal processes for the seasonal cycle of sea‐ice microwave brightness temperatures during early summer in the Weddell Sea, Antarctica</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>J. Bareiss</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
</author>
<host>
<volume>88</volume>
<pages>
<last>241</last>
<first>237</first>
</pages>
<author></author>
<title>Eos Trans. AGU</title>
</host>
<title>New data set of onset of annual snowmelt on Antarctic sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Wendler</name>
</json:item>
<json:item>
<name>A. P. Worby</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>279</last>
<first>275</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>The surface energy budget in the Antarctic summer sea‐ice pack</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Wendler</name>
</json:item>
<json:item>
<name>U. Adolphs</name>
</json:item>
<json:item>
<name>A. Hauser</name>
</json:item>
<json:item>
<name>B. Moore</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>130</last>
<first>122</first>
</pages>
<author></author>
<title>J. Glaciol.</title>
</host>
<title>On the surface energy budget of sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Wendler</name>
</json:item>
<json:item>
<name>B. Hartmann</name>
</json:item>
<json:item>
<name>C. Wyatt</name>
</json:item>
<json:item>
<name>M. Shulski</name>
</json:item>
<json:item>
<name>H. Stone</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>148</last>
<first>131</first>
</pages>
<author></author>
<title>Boundary Layer Meteorol.</title>
</host>
<title>Midsummer energy balance for the southern seas</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Zeng</name>
</json:item>
<json:item>
<name>Y. Tohjima</name>
</json:item>
<json:item>
<name>Y. Fujinuma</name>
</json:item>
<json:item>
<name>H. Mukai</name>
</json:item>
<json:item>
<name>M. Katsumoto</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>1919</last>
<first>1911</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>A study of trajectory quality using methane measurements from Hateruma Island</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>114</volume>
<publisherId>
<json:string>JGRC</json:string>
</publisherId>
<pages>
<total>18</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>C4</issue>
<subject>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Sea ice</value>
</json:item>
<json:item>
<value>Cryosphere</value>
</json:item>
<json:item>
<value>Sea ice</value>
</json:item>
<json:item>
<value>Polynas</value>
</json:item>
<json:item>
<value>Leads</value>
</json:item>
<json:item>
<value>ATMOSPHERIC PROCESSES</value>
</json:item>
<json:item>
<value>Polar meteorology</value>
</json:item>
<json:item>
<value>Boundary layer processes</value>
</json:item>
<json:item>
<value>Radiative processes</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: PHYSICAL</value>
</json:item>
<json:item>
<value>Ice mechanics and air/sea/ice exchange processes</value>
</json:item>
<json:item>
<value>Ice mechanics and air/sea/ice exchange processes</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Oceans</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202c</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1029/2008JC004995</json:string>
</doi>
<id>B9D831A83FA76D2B7B4A726EFE7E10F877674CCC</id>
<score>0.01587881</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/B9D831A83FA76D2B7B4A726EFE7E10F877674CCC/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/B9D831A83FA76D2B7B4A726EFE7E10F877674CCC/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/B9D831A83FA76D2B7B4A726EFE7E10F877674CCC/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>Copyright 2009 by the American Geophysical Union.</p>
</availability>
<date>2009</date>
</publicationStmt>
<notesStmt>
<note>Tab‐delimited Table 1.Tab‐delimited Table 2.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
<author xml:id="author-1">
<persName>
<forename type="first">Timo</forename>
<surname>Vihma</surname>
</persName>
<email>(timo.vihma@fmi.fi)</email>
<affiliation>Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Milla M.</forename>
<surname>Johansson</surname>
</persName>
<affiliation>Finnish Institute of Marine Research, Helsinki, Finland</affiliation>
<affiliation>Now at Marine Research, Finnish Meteorological Institute, Helsinki, Finland.</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Jouko</forename>
<surname>Launiainen</surname>
</persName>
<affiliation>Finnish Institute of Marine Research, Helsinki, Finland</affiliation>
<affiliation>Retired.</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Oceans</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202c</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2009-04"></date>
<biblScope unit="volume">114</biblScope>
<biblScope unit="issue">C4</biblScope>
<biblScope unit="page" from="/">n/a</biblScope>
<biblScope unit="page" to="/">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">B9D831A83FA76D2B7B4A726EFE7E10F877674CCC</idno>
<idno type="DOI">10.1029/2008JC004995</idno>
<idno type="ArticleID">2008JC004995</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The radiative and turbulent heat fluxes between the snow‐covered sea ice and the atmosphere were analyzed on the basis of observations during the Ice Station Polarstern (ISPOL) in the western Weddell Sea from 28 November 2004 to 2 January 2005. The net heat flux to the snowpack was 3 ± 2 W m−2 (mean ± standard deviation; defined positive toward snow), consisting of the net shortwave radiation (52 ± 8 W m−2), net longwave radiation (−29 ± 4 W m−2), latent heat flux (−14 ± 5 W m−2), and sensible heat flux (−6 ± 5 W m−2). The snowpack receives heat at daytime while releases heat every night. Snow thinning was due to approximately equal contributions of the increase of snow density, melt, and evaporation. The surface albedo only decreased from 0.9 to 0.8. During a case of cold air advection, the sensible heat flux was even below −50 W m−2. At night, the snow surface temperature was strongly controlled by the incoming longwave radiation. The diurnal cycle in the downward solar radiation drove diurnal cycles in 14 other variables. Comparisons against observations from the Arctic sea ice in summer indicated that at ISPOL the air was colder, surface albedo was higher, and a larger portion of the absorbed solar radiation was returned to the atmosphere via turbulent heat fluxes. The limited melt allowed larger diurnal cycles. Due to regional differences in atmospheric circulation and ice conditions, the ISPOL results cannot be fully generalized for the entire Antarctic sea ice zone.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>surface heat balance</term>
</item>
<item>
<term>sea ice</term>
</item>
<item>
<term>Antarctic</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Sea ice</term>
</item>
<item>
<term>Cryosphere</term>
</item>
<item>
<term>Sea ice</term>
</item>
<item>
<term>Polynas</term>
</item>
<item>
<term>Leads</term>
</item>
<item>
<term>ATMOSPHERIC PROCESSES</term>
</item>
<item>
<term>Polar meteorology</term>
</item>
<item>
<term>Boundary layer processes</term>
</item>
<item>
<term>Radiative processes</term>
</item>
<item>
<term>OCEANOGRAPHY: PHYSICAL</term>
</item>
<item>
<term>Ice mechanics and air/sea/ice exchange processes</term>
</item>
<item>
<term>Ice mechanics and air/sea/ice exchange processes</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-06-30">Received</change>
<change when="2009-02-25">Registration</change>
<change when="2009-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/B9D831A83FA76D2B7B4A726EFE7E10F877674CCC/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrc11169">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202c</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRC"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS">Journal of Geophysical Research: Oceans</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="40">
<doi>10.1002/jgrc.v114.C4</doi>
<idGroup>
<id type="focusSection" value="3"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Oceans</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="114">114</numbering>
<numbering type="journalIssue">C4</numbering>
</numberingGroup>
<coverDate startDate="2009-04">April 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="110" type="article" status="forIssue">
<doi>10.1029/2008JC004995</doi>
<idGroup>
<id type="editorialOffice" value="2008JC004995"></id>
<id type="society" value="C04019"></id>
<id type="unit" value="JGRC11169"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2009 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-06-30"></event>
<event type="manuscriptRevised" date="2009-01-02"></event>
<event type="manuscriptAccepted" date="2009-02-25"></event>
<event type="firstOnline" date="2009-04-25"></event>
<event type="publishedOnlineFinalForm" date="2009-04-25"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.44_TO_WileyML3Gv1.0.3 version:1.3; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2013-01-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0750">Sea ice</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0700">Cryosphere</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0750">Sea ice</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0752">Polynas</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0754">Leads</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/3349">Polar meteorology</subject>
<subject href="http://psi.agu.org/taxonomy5/3307">Boundary layer processes</subject>
<subject href="http://psi.agu.org/taxonomy5/3359">Radiative processes</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrc11169-cit-0000" type="self">
<author>
<familyName>Vihma</familyName>
,
<givenNames>T.</givenNames>
</author>
,
<author>
<givenNames>M. M.</givenNames>
<familyName>Johansson</familyName>
</author>
, and
<author>
<givenNames>J.</givenNames>
<familyName>Launiainen</familyName>
</author>
(
<pubYear year="2009">2009</pubYear>
),
<articleTitle>Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>114</vol>
, C04019, doi:
<accessionId ref="info:doi/10.1029/2008JC004995">10.1029/2008JC004995</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRC.JGRC11169.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="11"></count>
<count type="tableTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
<title type="short">SURFACE FLUXES OVER ANTARCTIC SEA ICE</title>
<title type="shortAuthors">Vihma
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrc11169-cr-0001" affiliationRef="#jgrc11169-aff-0001">
<personName>
<givenNames>Timo</givenNames>
<familyName>Vihma</familyName>
</personName>
<contactDetails>
<email normalForm="(timo.vihma@fmi.fi)">(timo.vihma@fmi.fi)</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrc11169-cr-0002" affiliationRef="#jgrc11169-aff-0002 #jgrc11169-aff-0003">
<personName>
<givenNames>Milla M.</givenNames>
<familyName>Johansson</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrc11169-cr-0003" affiliationRef="#jgrc11169-aff-0002 #jgrc11169-aff-0004">
<personName>
<givenNames>Jouko</givenNames>
<familyName>Launiainen</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="FI" type="organization" xml:id="jgrc11169-aff-0001">
<orgName>Meteorological Research, Finnish Meteorological Institute</orgName>
<address>
<city>Helsinki</city>
<country>Finland</country>
</address>
</affiliation>
<affiliation countryCode="FI" type="organization" xml:id="jgrc11169-aff-0002">
<orgName>Finnish Institute of Marine Research</orgName>
<address>
<city>Helsinki</city>
<country>Finland</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="jgrc11169-aff-0003">
<unparsedAffiliation>Now at Marine Research, Finnish Meteorological Institute, Helsinki, Finland.</unparsedAffiliation>
</affiliation>
<affiliation type="organization" xml:id="jgrc11169-aff-0004">
<unparsedAffiliation>Retired.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrc11169-kwd-0001">surface heat balance</keyword>
<keyword xml:id="jgrc11169-kwd-0002">sea ice</keyword>
<keyword xml:id="jgrc11169-kwd-0003">Antarctic</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11169:jgrc11169-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrc11169:jgrc11169-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrc11169-para-0001" label="1">The radiative and turbulent heat fluxes between the snow‐covered sea ice and the atmosphere were analyzed on the basis of observations during the Ice Station Polarstern (ISPOL) in the western Weddell Sea from 28 November 2004 to 2 January 2005. The net heat flux to the snowpack was 3 ± 2 W m
<sup>−2</sup>
(mean ± standard deviation; defined positive toward snow), consisting of the net shortwave radiation (52 ± 8 W m
<sup>−2</sup>
), net longwave radiation (−29 ± 4 W m
<sup>−2</sup>
), latent heat flux (−14 ± 5 W m
<sup>−2</sup>
), and sensible heat flux (−6 ± 5 W m
<sup>−2</sup>
). The snowpack receives heat at daytime while releases heat every night. Snow thinning was due to approximately equal contributions of the increase of snow density, melt, and evaporation. The surface albedo only decreased from 0.9 to 0.8. During a case of cold air advection, the sensible heat flux was even below −50 W m
<sup>−2</sup>
. At night, the snow surface temperature was strongly controlled by the incoming longwave radiation. The diurnal cycle in the downward solar radiation drove diurnal cycles in 14 other variables. Comparisons against observations from the Arctic sea ice in summer indicated that at ISPOL the air was colder, surface albedo was higher, and a larger portion of the absorbed solar radiation was returned to the atmosphere via turbulent heat fluxes. The limited melt allowed larger diurnal cycles. Due to regional differences in atmospheric circulation and ice conditions, the ISPOL results cannot be fully generalized for the entire Antarctic sea ice zone.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>SURFACE FLUXES OVER ANTARCTIC SEA ICE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Timo</namePart>
<namePart type="family">Vihma</namePart>
<affiliation>Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland</affiliation>
<affiliation>E-mail: (timo.vihma@fmi.fi)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milla M.</namePart>
<namePart type="family">Johansson</namePart>
<affiliation>Finnish Institute of Marine Research, Helsinki, Finland</affiliation>
<affiliation>Now at Marine Research, Finnish Meteorological Institute, Helsinki, Finland.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jouko</namePart>
<namePart type="family">Launiainen</namePart>
<affiliation>Finnish Institute of Marine Research, Helsinki, Finland</affiliation>
<affiliation>Retired.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2009-04</dateIssued>
<dateCaptured encoding="w3cdtf">2008-06-30</dateCaptured>
<dateValid encoding="w3cdtf">2009-02-25</dateValid>
<edition>Vihma, T., M. M. Johansson, and J. Launiainen (2009), Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer, J. Geophys. Res., 114, C04019, doi:10.1029/2008JC004995.</edition>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">11</extent>
<extent unit="tables">2</extent>
</physicalDescription>
<abstract>The radiative and turbulent heat fluxes between the snow‐covered sea ice and the atmosphere were analyzed on the basis of observations during the Ice Station Polarstern (ISPOL) in the western Weddell Sea from 28 November 2004 to 2 January 2005. The net heat flux to the snowpack was 3 ± 2 W m−2 (mean ± standard deviation; defined positive toward snow), consisting of the net shortwave radiation (52 ± 8 W m−2), net longwave radiation (−29 ± 4 W m−2), latent heat flux (−14 ± 5 W m−2), and sensible heat flux (−6 ± 5 W m−2). The snowpack receives heat at daytime while releases heat every night. Snow thinning was due to approximately equal contributions of the increase of snow density, melt, and evaporation. The surface albedo only decreased from 0.9 to 0.8. During a case of cold air advection, the sensible heat flux was even below −50 W m−2. At night, the snow surface temperature was strongly controlled by the incoming longwave radiation. The diurnal cycle in the downward solar radiation drove diurnal cycles in 14 other variables. Comparisons against observations from the Arctic sea ice in summer indicated that at ISPOL the air was colder, surface albedo was higher, and a larger portion of the absorbed solar radiation was returned to the atmosphere via turbulent heat fluxes. The limited melt allowed larger diurnal cycles. Due to regional differences in atmospheric circulation and ice conditions, the ISPOL results cannot be fully generalized for the entire Antarctic sea ice zone.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.</note>
<subject>
<genre>keywords</genre>
<topic>surface heat balance</topic>
<topic>sea ice</topic>
<topic>Antarctic</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Oceans</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0750">Sea ice</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">Cryosphere</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0750">Sea ice</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0752">Polynas</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0754">Leads</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3300">ATMOSPHERIC PROCESSES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3349">Polar meteorology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3307">Boundary layer processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/3359">Radiative processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4500">OCEANOGRAPHY: PHYSICAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4540">Ice mechanics and air/sea/ice exchange processes</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202c</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRC</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>114</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>C4</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">B9D831A83FA76D2B7B4A726EFE7E10F877674CCC</identifier>
<identifier type="DOI">10.1029/2008JC004995</identifier>
<identifier type="ArticleID">2008JC004995</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2009 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001B13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B9D831A83FA76D2B7B4A726EFE7E10F877674CCC
   |texte=   Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024