Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rhizodeposition of maize: Short‐term carbon budget and composition

Identifieur interne : 001A10 ( Istex/Corpus ); précédent : 001A09; suivant : 001A11

Rhizodeposition of maize: Short‐term carbon budget and composition

Auteurs : Holger Fischer ; Kai-Uwe Eckhardt ; Axel Meyer ; Günter Neumann ; Peter Leinweber ; Klaus Fischer ; Yakov Kuzyakov

Source :

RBID : ISTEX:168EA26325F3FE3DD581D1867E1931FBB6801487

English descriptors

Abstract

The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.

Url:
DOI: 10.1002/jpln.200800293

Links to Exploration step

ISTEX:168EA26325F3FE3DD581D1867E1931FBB6801487

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rhizodeposition of maize: Short‐term carbon budget and composition</title>
<author>
<name sortKey="Fischer, Holger" sort="Fischer, Holger" uniqKey="Fischer H" first="Holger" last="Fischer">Holger Fischer</name>
<affiliation>
<mods:affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Holger.Fischer@uni‐hohenheim.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eckhardt, Kai We" sort="Eckhardt, Kai We" uniqKey="Eckhardt K" first="Kai-Uwe" last="Eckhardt">Kai-Uwe Eckhardt</name>
<affiliation>
<mods:affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Axel" sort="Meyer, Axel" uniqKey="Meyer A" first="Axel" last="Meyer">Axel Meyer</name>
<affiliation>
<mods:affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neumann, Gunter" sort="Neumann, Gunter" uniqKey="Neumann G" first="Günter" last="Neumann">Günter Neumann</name>
<affiliation>
<mods:affiliation>Institute of Plant Nutrition, University of Hohenheim, 70593 Stuttgart, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leinweber, Peter" sort="Leinweber, Peter" uniqKey="Leinweber P" first="Peter" last="Leinweber">Peter Leinweber</name>
<affiliation>
<mods:affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fischer, Klaus" sort="Fischer, Klaus" uniqKey="Fischer K" first="Klaus" last="Fischer">Klaus Fischer</name>
<affiliation>
<mods:affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuzyakov, Yakov" sort="Kuzyakov, Yakov" uniqKey="Kuzyakov Y" first="Yakov" last="Kuzyakov">Yakov Kuzyakov</name>
<affiliation>
<mods:affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:168EA26325F3FE3DD581D1867E1931FBB6801487</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/jpln.200800293</idno>
<idno type="url">https://api.istex.fr/document/168EA26325F3FE3DD581D1867E1931FBB6801487/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A10</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Rhizodeposition of maize: Short‐term carbon budget and composition</title>
<author>
<name sortKey="Fischer, Holger" sort="Fischer, Holger" uniqKey="Fischer H" first="Holger" last="Fischer">Holger Fischer</name>
<affiliation>
<mods:affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Holger.Fischer@uni‐hohenheim.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eckhardt, Kai We" sort="Eckhardt, Kai We" uniqKey="Eckhardt K" first="Kai-Uwe" last="Eckhardt">Kai-Uwe Eckhardt</name>
<affiliation>
<mods:affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Axel" sort="Meyer, Axel" uniqKey="Meyer A" first="Axel" last="Meyer">Axel Meyer</name>
<affiliation>
<mods:affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Neumann, Gunter" sort="Neumann, Gunter" uniqKey="Neumann G" first="Günter" last="Neumann">Günter Neumann</name>
<affiliation>
<mods:affiliation>Institute of Plant Nutrition, University of Hohenheim, 70593 Stuttgart, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leinweber, Peter" sort="Leinweber, Peter" uniqKey="Leinweber P" first="Peter" last="Leinweber">Peter Leinweber</name>
<affiliation>
<mods:affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fischer, Klaus" sort="Fischer, Klaus" uniqKey="Fischer K" first="Klaus" last="Fischer">Klaus Fischer</name>
<affiliation>
<mods:affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kuzyakov, Yakov" sort="Kuzyakov, Yakov" uniqKey="Kuzyakov Y" first="Yakov" last="Kuzyakov">Yakov Kuzyakov</name>
<affiliation>
<mods:affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Plant Nutrition and Soil Science</title>
<title level="j" type="abbrev">Z. Pflanzenernähr. Bodenk.</title>
<idno type="ISSN">1436-8730</idno>
<idno type="eISSN">1522-2624</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2010-02">2010-02</date>
<biblScope unit="volume">173</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="67">67</biblScope>
<biblScope unit="page" to="79">79</biblScope>
</imprint>
<idno type="ISSN">1436-8730</idno>
</series>
<idno type="istex">168EA26325F3FE3DD581D1867E1931FBB6801487</idno>
<idno type="DOI">10.1002/jpln.200800293</idno>
<idno type="ArticleID">JPLN200800293</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1436-8730</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>14C budget</term>
<term>HPLC</term>
<term>Py‐FIMS</term>
<term>amino acids</term>
<term>carbohydrates</term>
<term>carboxylates</term>
<term>composition</term>
<term>maize</term>
<term>methods</term>
<term>rhizodeposition</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Holger Fischer</name>
<affiliations>
<json:string>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</json:string>
<json:string>E-mail: Holger.Fischer@uni‐hohenheim.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kai‐Uwe Eckhardt</name>
<affiliations>
<json:string>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Axel Meyer</name>
<affiliations>
<json:string>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Günter Neumann</name>
<affiliations>
<json:string>Institute of Plant Nutrition, University of Hohenheim, 70593 Stuttgart, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Peter Leinweber</name>
<affiliations>
<json:string>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Klaus Fischer</name>
<affiliations>
<json:string>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yakov Kuzyakov</name>
<affiliations>
<json:string>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>amino acids</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>carbohydrates</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>carboxylates</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>14C budget</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>maize</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>HPLC</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rhizodeposition</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>composition</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Py‐FIMS</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>methods</value>
</json:item>
</subject>
<articleId>
<json:string>JPLN200800293</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 794 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2166</abstractCharCount>
<pdfWordCount>8029</pdfWordCount>
<pdfCharCount>47758</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>317</abstractWordCount>
</qualityIndicators>
<title>Rhizodeposition of maize: Short‐term carbon budget and composition</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>A. Bacic</name>
</json:item>
<json:item>
<name>S. F. Moody</name>
</json:item>
<json:item>
<name>J. A. McComb</name>
</json:item>
<json:item>
<name>J. M. Hinch</name>
</json:item>
<json:item>
<name>A. E. Clarke</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>641</last>
<first>633</first>
</pages>
<author></author>
<title>Aust. J. Plant Physiol.</title>
</host>
<title>Extracellular polysaccharides from shaken liquid cultures of Zea mays.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Barber</name>
</json:item>
<json:item>
<name>J. M. Lynch</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>308</last>
<first>305</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Microbial growth in the rhizosphere.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Bock</name>
</json:item>
<json:item>
<name>B. Glaser</name>
</json:item>
<json:item>
<name>N. Millar</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>490</last>
<first>478</first>
</pages>
<author></author>
<title>Global Change Biol.</title>
</host>
<title>Sequestration and turnover of plant‐ and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Boddy</name>
</json:item>
<json:item>
<name>P. W. Hill</name>
</json:item>
<json:item>
<name>J. Farrar</name>
</json:item>
<json:item>
<name>D. L. Jones</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>835</last>
<first>827</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. D. Bowen</name>
</json:item>
</author>
<host>
<volume>30</volume>
<pages>
<last>139</last>
<first>139</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Nutrient status effects on loss of amides and amino acids from pine roots.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Christou</name>
</json:item>
<json:item>
<name>E. J. Avramides</name>
</json:item>
<json:item>
<name>D. L. Jones</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>2277</last>
<first>2265</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Dissolved organic nitrogen dynamics in a Mediterranean vineyard soil.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. C. da Cunha</name>
</json:item>
<json:item>
<name>L. Serve</name>
</json:item>
<json:item>
<name>J. L. Blazi</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>964</last>
<first>953</first>
</pages>
<author></author>
<title>Org. Geochem.</title>
</host>
<title>Neutral sugars as biomarkers in the particulate organic matter of a French Mediterranean river.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. D. Dakora</name>
</json:item>
<json:item>
<name>D. A. Phillips</name>
</json:item>
</author>
<host>
<volume>245</volume>
<pages>
<last>47</last>
<first>35</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Root exudates as mediators of mineral acquisition in low‐nutrient environments.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>FAO‐UNESCO (1997): Soil Map of the World. Revised Legend, IRSIC, Wageningen, The Netherlands.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Farrar</name>
</json:item>
<json:item>
<name>M. Hawes</name>
</json:item>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>S. Lindow</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>837</last>
<first>827</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>How roots control the flux of carbon to the rhizosphere.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Fischer</name>
</json:item>
<json:item>
<name>A. Meyer</name>
</json:item>
<json:item>
<name>K. Fischer</name>
</json:item>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>2935</last>
<first>2926</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Carbohydrate and amino acid composition of dissolved organic matter leached from soil.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Gerke</name>
</json:item>
<json:item>
<name>W. Römer</name>
</json:item>
<json:item>
<name>A. Jungk</name>
</json:item>
</author>
<host>
<volume>157</volume>
<pages>
<last>294</last>
<first>289</first>
</pages>
<author></author>
<title>Z. Pflanzenernähr. Bodenkd.</title>
</host>
<title>The excretion of citric and malic acid by proteoids roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminium in the proteoid rhizosphere in samples of an oxisol and a luvisol.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Glaser</name>
</json:item>
<json:item>
<name>M. B. Turrion</name>
</json:item>
<json:item>
<name>D. Solomon</name>
</json:item>
<json:item>
<name>A. Ni</name>
</json:item>
<json:item>
<name>W. Zech</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>413</last>
<first>407</first>
</pages>
<author></author>
<title>Biol. Fert. Soils</title>
</host>
<title>Soil organic matter quantity and quality in mountain soils of the Alay Range, Kyrgyzia, affected by land use change.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Hartung, J., Epelt, B., Klösener, K.‐H. (1995): Statistik: Lehr‐ und Handbuch der angewandten Statistik. 10th revised edn., R. Oldenbourg Verlag, München, Wien.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Hill</name>
</json:item>
<json:item>
<name>J. Farrar</name>
</json:item>
<json:item>
<name>D. L. Jones</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>624</last>
<first>616</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Decoupling of microbial glucose uptake and mineralization in soil.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>IUSS Working Group WRB (2007): World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome, Italy.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Jones</name>
</json:item>
</author>
<host>
<volume>205</volume>
<pages>
<last>44</last>
<first>25</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Organic acids in the rhizosphere – a critical review.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>D. Brassington</name>
</json:item>
</author>
<host>
<volume>49</volume>
<pages>
<last>455</last>
<first>447</first>
</pages>
<author></author>
<title>Eur. J. Soil Sci.</title>
</host>
<title>Sorption of organic acids in acid soils and its implications in the rhizosphere.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>P. R. Darrah</name>
</json:item>
</author>
<host>
<volume>166</volume>
<pages>
<last>257</last>
<first>247</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Role of root derived organic acids in the mobilization of nutrients from the rhizosphere.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>A. Hodge</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>1342</last>
<first>1331</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>D. Shannon</name>
</json:item>
</author>
<host>
<volume>63</volume>
<pages>
<last>1206</last>
<first>1199</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Mineralization of amino acids applied to soils: Impact of soil sieving, storage, and inorganic nitrogen additions.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>P. R. Darrah</name>
</json:item>
<json:item>
<name>L. V. Kochian</name>
</json:item>
</author>
<host>
<volume>180</volume>
<pages>
<last>66</last>
<first>57</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>P. Dennis</name>
</json:item>
<json:item>
<name>A. Owen</name>
</json:item>
<json:item>
<name>P. van Hees</name>
</json:item>
</author>
<host>
<volume>248</volume>
<pages>
<last>41</last>
<first>31</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Organic acid behavior in soils – misconceptions and knowledge gaps.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>I. Kraffczyk</name>
</json:item>
<json:item>
<name>G. Trolldenier</name>
</json:item>
<json:item>
<name>H. Beringer</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<last>322</last>
<first>315</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>1631</last>
<first>1621</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Separating microbial respiration of exudates from root respiration in non‐sterile soils: a comparison of four methods.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
<json:item>
<name>V. Demin</name>
</json:item>
</author>
<host>
<volume>3</volume>
<pages>
<last>22</last>
<first>11</first>
</pages>
<author></author>
<title>Science of Soils</title>
</host>
<title>CO2 efflux by rapid decomposition of low molecular organic substances in soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
<json:item>
<name>S. V. Siniakina</name>
</json:item>
</author>
<host>
<volume>164</volume>
<pages>
<last>517</last>
<first>511</first>
</pages>
<author></author>
<title>J. Plant Nutr. Soil Sci.</title>
</host>
<title>A novel method for separating root‐derived organic compounds from root respiration in non‐sterilized soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
<json:item>
<name>P. Leinweber</name>
</json:item>
<json:item>
<name>D. Sapronov</name>
</json:item>
<json:item>
<name>K. U. Eckhardt</name>
</json:item>
</author>
<host>
<volume>166</volume>
<pages>
<last>723</last>
<first>719</first>
</pages>
<author></author>
<title>J. Plant Nutr. Soil Sci.</title>
</host>
<title>Qualitative assessment of rhizodeposits in non‐sterile soil by analytical pyrolysis.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
<json:item>
<name>A. Raskatov</name>
</json:item>
<json:item>
<name>M. Kaupenjohann</name>
</json:item>
</author>
<host>
<volume>254</volume>
<pages>
<last>327</last>
<first>317</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Turnover and distribution of root exudates of Zea mays.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Leinweber</name>
</json:item>
<json:item>
<name>K.‐U. Eckhardt</name>
</json:item>
<json:item>
<name>H. Fischer</name>
</json:item>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>1234</last>
<first>1230</first>
</pages>
<author></author>
<title>Rapid Comm. Mass Spec.</title>
</host>
<title>A new rapid micro‐method for the molecular‐chemical characterization of rhizodeposits by field‐ionization mass spectrometry.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. A. Lehmeier</name>
</json:item>
<json:item>
<name>F. A. Lattanzi</name>
</json:item>
<json:item>
<name>R. Schäufele</name>
</json:item>
<json:item>
<name>M. Wild</name>
</json:item>
<json:item>
<name>H. Schnyder</name>
</json:item>
</author>
<host>
<volume>148</volume>
<pages>
<last>1158</last>
<first>1148</first>
</pages>
<author></author>
<title>Plant Physiol.</title>
</host>
<title>Root and shoot respiration of perennial ryegrass are supplied by the same substrate pools: Assessment by dynamic 13C labeling and compartmental analysis of tracer kinetics.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Martens</name>
</json:item>
<json:item>
<name>K. L. Loeffelmann</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>1399</last>
<first>1393</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Improved accounting of carbohydrate carbon from plants and soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. A. Meharg</name>
</json:item>
<json:item>
<name>K. Killham</name>
</json:item>
</author>
<host>
<volume>133</volume>
<pages>
<last>116</last>
<first>111</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>A novel method of quantifying root exudation in the presence of soil microflora.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Melnitchouck</name>
</json:item>
<json:item>
<name>P. Leinweber</name>
</json:item>
<json:item>
<name>K.‐U. Eckhardt</name>
</json:item>
<json:item>
<name>R. Beese</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>162</last>
<first>155</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Qualitative differences between day‐ and night‐time rhizodeposition in maize (Zea mays L.) as investigated by pyrolysis‐field ionization mass spectrometry.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Melnitchouck</name>
</json:item>
<json:item>
<name>P. Leinweber</name>
</json:item>
<json:item>
<name>I. Broer</name>
</json:item>
<json:item>
<name>K.‐U. Eckhardt</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>46</last>
<first>37</first>
</pages>
<author></author>
<title>Environ. Biosafety Res.</title>
</host>
<title>Pyrolysis‐field ionization mass spectrometry of rhizodeposits – A new approach to identify potential effects of genetically modified plants on soil organisms.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>W. Merbach</name>
</json:item>
<json:item>
<name>E. Mirus</name>
</json:item>
<json:item>
<name>G. Knof</name>
</json:item>
<json:item>
<name>R. Remus</name>
</json:item>
<json:item>
<name>S. Ruppel</name>
</json:item>
<json:item>
<name>R. Russow</name>
</json:item>
<json:item>
<name>A. Gransee</name>
</json:item>
<json:item>
<name>J. Schulze</name>
</json:item>
</author>
<host>
<volume>162</volume>
<pages>
<last>383</last>
<first>373</first>
</pages>
<author></author>
<title>J. Plant Nutr. Soil Sci.</title>
</host>
<title>Release of carbon and nitrogen compounds by plant roots and their possible ecological importance.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Meyer</name>
</json:item>
<json:item>
<name>H. Fischer</name>
</json:item>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
<json:item>
<name>K. Fischer</name>
</json:item>
</author>
<host>
<volume>171</volume>
<pages>
<last>926</last>
<first>917</first>
</pages>
<author></author>
<title>J. Plant Nutr. Soil Sci.</title>
</host>
<title>Improved RP‐HPLC and anion‐exchange chromatography methods for the determination of amino acids and carbohydrates in soil solutions.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. E. C. Moers</name>
</json:item>
<json:item>
<name>J. J. Boon</name>
</json:item>
<json:item>
<name>J. W. De Leeuw</name>
</json:item>
<json:item>
<name>M. Baas</name>
</json:item>
<json:item>
<name>P. A. Schenck</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>2021</last>
<first>2011</first>
</pages>
<author></author>
<title>Geochim. Cosmochim. Acta</title>
</host>
<title>Carbohydrate speciation and Py‐MS mapping of peat samples from a subtropical open marsh environment.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Neumann, G. (2006): Root exudates and organic composition of plant roots, in Luster, J., Finlay, R. (eds.): Handbook of Methods used in Rhizosphere Research. Swiss Federal Institute for Forest, Snow, and Landscape Research, Birmensdorf, Switzerland, online at www.rhizo.at/handbook.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Neumann</name>
</json:item>
<json:item>
<name>V. Römheld</name>
</json:item>
</author>
<host>
<volume>211</volume>
<pages>
<last>130</last>
<first>121</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Root excretion of carboxylic acids and protons in phosphorus‐deficient plants.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Neumann, G., Römheld, V. (2002): Root‐induced Changes in the Availability of Nutrients in the Rhizosphere, in Waisel, Y., et al. (eds.): Plant Roots: The Hidden Half. 3rd rev. and exp. edn., Marcel Dekker, Inc., New York, Basel, pp. 617–649.</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Neumann, G., Römheld, V. (2007): The release of root exudates as affected by the plant physiological status, in Pinton, R. (ed.): The Rhizosphere: biochemistry and organic substances at the soil‐plant interface. 2nd edn., CRC Press, Boca Raton, Fla, pp. 23–72.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Nguyen</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>396</last>
<first>375</first>
</pages>
<author></author>
<title>Agronomie</title>
</host>
<title>Rhizodeposition of organic C by plants: mechanisms and controls.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. M. Oades</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>337</last>
<first>319</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Soil organic matter and structural stability: mechanisms and implications for management.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. A. S. Rattray</name>
</json:item>
<json:item>
<name>E. Paterson</name>
</json:item>
<json:item>
<name>K. Killham</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>286</last>
<first>280</first>
</pages>
<author></author>
<title>Biol. Fertil. Soils</title>
</host>
<title>Characterisation of the dynamics of C‐partitioning within Lolium perenne and to the rhizosphere microbial biomass using 14C pulse chase.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Römheld</name>
</json:item>
</author>
<host>
<volume>120</volume>
<pages>
<last>134</last>
<first>127</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. J. A. Ryle</name>
</json:item>
<json:item>
<name>J. M. Cobby</name>
</json:item>
<json:item>
<name>C. E. Powell</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>586</last>
<first>571</first>
</pages>
<author></author>
<title>Ann. Bot.</title>
</host>
<title>Synthetic and maintenance respiratory losses of 14CO2 in uniculm barley and maize.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Sariyildiz</name>
</json:item>
<json:item>
<name>J. M. Anderson</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>26</last>
<first>15</first>
</pages>
<author></author>
<title>Silva Fennica</title>
</host>
<title>Intra‐specific variation in cell wall constituents of needle age classes of Pinus sylvestris in relation to soil fertility status in Southwest England.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Schnyder</name>
</json:item>
<json:item>
<name>R. Schäufele</name>
</json:item>
<json:item>
<name>M. Lötscher</name>
</json:item>
<json:item>
<name>T. Gebbing</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>1874</last>
<first>1863</first>
</pages>
<author></author>
<title>Plant Cell Environ.</title>
</host>
<title>Disentangling CO2 fluxes: Direct measurements of mesocosm‐scale natural abundance 13CO2/12CO2 gas exchange, 13C discrimination, and labelling of CO2 exchange flux components in controlled environments.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. R. Schulten</name>
</json:item>
<json:item>
<name>P. Leinweber</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>248</last>
<first>237</first>
</pages>
<author></author>
<title>Eur. J. Soil Sci.</title>
</host>
<title>Thermal stability and composition of mineral‐bound organic matter in density fractions of soil.</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Schulten, H.‐R., Leinweber, P., Jandl, G. (2002): Analytical pyrolysis of humic substances and dissolved organic matter in water, in Frimmel, F. H., Abbt‐Braun, G., Heumann, K. G., Hock, B., Lüdemann, H.‐D., Spiteller, M. (eds.): Refractory Organic Substances in the Environment, Wiley‐VCH, Weinheim, pp. 163–187.</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>B. W. Strobel</name>
</json:item>
</author>
<host>
<volume>99</volume>
<pages>
<last>198</last>
<first>169</first>
</pages>
<author></author>
<title>Geoderma</title>
</host>
<title>Influence of vegetation on low‐molecular‐weight carboxylic acids in soil solution – a review.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. A. W. van Hees</name>
</json:item>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>D. L. Godbold</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>1272</last>
<first>1261</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. A. W. van Hees</name>
</json:item>
<json:item>
<name>S. I. Vinogradoff</name>
</json:item>
<json:item>
<name>A. C. Edwards</name>
</json:item>
<json:item>
<name>D. L. Godbold</name>
</json:item>
<json:item>
<name>D. L. Jones</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<last>1026</last>
<first>1015</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Low molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations and biodegradation rates.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. A. W. van Hees</name>
</json:item>
<json:item>
<name>D. L. Jones</name>
</json:item>
<json:item>
<name>R. Finlay</name>
</json:item>
<json:item>
<name>D. L. Godbold</name>
</json:item>
<json:item>
<name>U. S. Lundstomd</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>13</last>
<first>1</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>The carbon we do not see – the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Vancura</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>328</last>
<first>319</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Root exudates of plants – III. Effect of temperature and 'cold shock' on the exudation of various compounds from seeds and seedlings of maize and cucumber.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Werth</name>
</json:item>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
</author>
<host>
<volume>284</volume>
<pages>
<last>333</last>
<first>319</first>
</pages>
<author></author>
<title>Plant Soil</title>
</host>
<title>Assimilate partitioning affects C‐13 fractionation of recently assimilated carbon in maize.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Werth</name>
</json:item>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>637</last>
<first>625</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Root‐derived carbon in soil respiration and microbial biomass determined by 14C and 13C.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Werth</name>
</json:item>
<json:item>
<name>I. Subbotina</name>
</json:item>
<json:item>
<name>Y. Kuzyakov</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>2781</last>
<first>2772</first>
</pages>
<author></author>
<title>Soil Biol. Biochem.</title>
</host>
<title>Three‐source partitioning of CO2 efflux from soil planted with maize by C‐13 natural abundance fails due to inactive microbial biomass.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Wittenmayer</name>
</json:item>
<json:item>
<name>A. Gransee</name>
</json:item>
<json:item>
<name>G. Schilling</name>
</json:item>
</author>
<host>
<volume>76</volume>
<pages>
<last>974</last>
<first>971</first>
</pages>
<author></author>
<title>Mitteilgn. Dtsch. Bodenkundl. Gesellsch.</title>
</host>
<title>Untersuchungen zur quantitativen und qualitativen Bestimmung von organischen Wurzelabscheidungen bei Mais und Erbsen.</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Zabowski</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>979</last>
<first>977</first>
</pages>
<author></author>
<title>Soil Sci. Soc. Am. J.</title>
</host>
<title>Limited release of soluble organics from roots during the centrifugal extraction of soil solutions.</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>173</volume>
<publisherId>
<json:string>JPLN</json:string>
</publisherId>
<pages>
<total>13</total>
<last>79</last>
<first>67</first>
</pages>
<issn>
<json:string>1436-8730</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>Regular Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1522-2624</json:string>
</eissn>
<title>Journal of Plant Nutrition and Soil Science</title>
<doi>
<json:string>10.1002/(ISSN)1522-2624</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>soil science</json:string>
<json:string>plant sciences</json:string>
<json:string>agronomy</json:string>
</wos>
<scienceMetrix>
<json:string>applied sciences</json:string>
<json:string>agriculture, fisheries & forestry</json:string>
<json:string>agronomy & agriculture</json:string>
</scienceMetrix>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/jpln.200800293</json:string>
</doi>
<id>168EA26325F3FE3DD581D1867E1931FBB6801487</id>
<score>0.8006789</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/168EA26325F3FE3DD581D1867E1931FBB6801487/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/168EA26325F3FE3DD581D1867E1931FBB6801487/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/168EA26325F3FE3DD581D1867E1931FBB6801487/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Rhizodeposition of maize: Short‐term carbon budget and composition</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<availability>
<p>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</p>
</availability>
<date>2010</date>
</publicationStmt>
<notesStmt>
<note>Deutsche Forschungsgemeinschaft (DFG)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Rhizodeposition of maize: Short‐term carbon budget and composition</title>
<author xml:id="author-1">
<persName>
<forename type="first">Holger</forename>
<surname>Fischer</surname>
</persName>
<email>Holger.Fischer@uni‐hohenheim.de</email>
<affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Kai‐Uwe</forename>
<surname>Eckhardt</surname>
</persName>
<affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Axel</forename>
<surname>Meyer</surname>
</persName>
<affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Günter</forename>
<surname>Neumann</surname>
</persName>
<affiliation>Institute of Plant Nutrition, University of Hohenheim, 70593 Stuttgart, Germany</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Peter</forename>
<surname>Leinweber</surname>
</persName>
<affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Klaus</forename>
<surname>Fischer</surname>
</persName>
<affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Yakov</forename>
<surname>Kuzyakov</surname>
</persName>
<affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Plant Nutrition and Soil Science</title>
<title level="j" type="abbrev">Z. Pflanzenernähr. Bodenk.</title>
<idno type="pISSN">1436-8730</idno>
<idno type="eISSN">1522-2624</idno>
<idno type="DOI">10.1002/(ISSN)1522-2624</idno>
<imprint>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2010-02"></date>
<biblScope unit="volume">173</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="67">67</biblScope>
<biblScope unit="page" to="79">79</biblScope>
</imprint>
</monogr>
<idno type="istex">168EA26325F3FE3DD581D1867E1931FBB6801487</idno>
<idno type="DOI">10.1002/jpln.200800293</idno>
<idno type="ArticleID">JPLN200800293</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>amino acids</term>
</item>
<item>
<term>carbohydrates</term>
</item>
<item>
<term>carboxylates</term>
</item>
<item>
<term>14C budget</term>
</item>
<item>
<term>maize</term>
</item>
<item>
<term>HPLC</term>
</item>
<item>
<term>rhizodeposition</term>
</item>
<item>
<term>composition</term>
</item>
<item>
<term>Py‐FIMS</term>
</item>
<item>
<term>methods</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Regular Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-03-25">Registration</change>
<change when="2010-02">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/168EA26325F3FE3DD581D1867E1931FBB6801487/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Weinheim</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1522-2624</doi>
<issn type="print">1436-8730</issn>
<issn type="electronic">1522-2624</issn>
<idGroup>
<id type="product" value="JPLN"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE ZEITSCHRIFT FUER PFLANZENERNAEHRUNG UND BODENKUNDE">Journal of Plant Nutrition and Soil Science</title>
<title type="tocForm">Journal of Plant Nutrition and Soil Science / Zeitschrift für Pflanzenernährung und Bodenkunde</title>
<title type="short">Z. Pflanzenernähr. Bodenk.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/jpln.v173:1</doi>
<numberingGroup>
<numbering type="journalVolume" number="173">173</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2010-02">February, 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="11" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jpln.200800293</doi>
<idGroup>
<id type="unit" value="JPLN200800293"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="13"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Regular Article</title>
<title type="tocHeading1">Regular Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="manuscriptAccepted" date="2009-03-25"></event>
<event type="firstOnline" date="2009-12-10"></event>
<event type="publishedOnlineFinalForm" date="2010-02-05"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-01"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">67</numbering>
<numbering type="pageLast">79</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JPLN.JPLN200800293.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="61"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Rhizodeposition of maize: Short‐term carbon budget and composition</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Holger</givenNames>
<familyName>Fischer</familyName>
</personName>
<contactDetails>
<email normalForm="Holger.Fischer@uni-hohenheim.de">Holger.Fischer@uni‐hohenheim.de</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>Kai‐Uwe</givenNames>
<familyName>Eckhardt</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#a3">
<personName>
<givenNames>Axel</givenNames>
<familyName>Meyer</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#a4">
<personName>
<givenNames>Günter</givenNames>
<familyName>Neumann</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#a2">
<personName>
<givenNames>Peter</givenNames>
<familyName>Leinweber</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#a3">
<personName>
<givenNames>Klaus</givenNames>
<familyName>Fischer</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#a1">
<personName>
<givenNames>Yakov</givenNames>
<familyName>Kuzyakov</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE" type="organization">
<unparsedAffiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="DE" type="organization">
<unparsedAffiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="DE" type="organization">
<unparsedAffiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="DE" type="organization">
<unparsedAffiliation>Institute of Plant Nutrition, University of Hohenheim, 70593 Stuttgart, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="DE" type="organization">
<unparsedAffiliation>Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil‐Wolff‐Str. 27, 70593 Stuttgart, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">amino acids</keyword>
<keyword xml:id="kwd2">carbohydrates</keyword>
<keyword xml:id="kwd3">carboxylates</keyword>
<keyword xml:id="kwd4">
<sup>14</sup>
C budget</keyword>
<keyword xml:id="kwd5">maize</keyword>
<keyword xml:id="kwd6">HPLC</keyword>
<keyword xml:id="kwd7">rhizodeposition</keyword>
<keyword xml:id="kwd8">composition</keyword>
<keyword xml:id="kwd9">Py‐FIMS</keyword>
<keyword xml:id="kwd10">methods</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Deutsche Forschungsgemeinschaft (DFG)</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO
<sub>2</sub>
from root respiration. Maize was labeled in
<sup>14</sup>
CO
<sub>2</sub>
atmosphere followed by subsequent simultaneous leaching and air flushing from soil.
<sup>14</sup>
C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO
<sub>2</sub>
. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more
<sup>14</sup>
C than from soil (0.6%
<i>vs.</i>
0.4%) and more HPLC‐detectable carboxylates (4.36
<i>vs.</i>
2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil]
<i>vs.</i>
1.03 μM [soil–sand]) and total carbohydrates (0.73
<i>vs.</i>
0.34 μM) and
<sup>14</sup>
CO
<sub>2</sub>
from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO
<sub>2</sub>
. Simultaneous application of three methods—
<sup>14</sup>
C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (
<sup>14</sup>
C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Rhizodeposition of maize: Short‐term carbon budget and composition</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Rhizodeposition of maize: Short‐term carbon budget and composition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Holger</namePart>
<namePart type="family">Fischer</namePart>
<affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</affiliation>
<affiliation>E-mail: Holger.Fischer@uni‐hohenheim.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai‐Uwe</namePart>
<namePart type="family">Eckhardt</namePart>
<affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Axel</namePart>
<namePart type="family">Meyer</namePart>
<affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Günter</namePart>
<namePart type="family">Neumann</namePart>
<affiliation>Institute of Plant Nutrition, University of Hohenheim, 70593 Stuttgart, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Leinweber</namePart>
<affiliation>Institute of Soil Science and Plant Nutrition, University of Rostock, Justus‐von‐Liebig‐Weg 6, 18051 Rostock, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Klaus</namePart>
<namePart type="family">Fischer</namePart>
<affiliation>FB VI‐Geography/Geosciences, Analytical and Ecological Chemistry, University of Trier, Universitätsring 15, 54286 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yakov</namePart>
<namePart type="family">Kuzyakov</namePart>
<affiliation>Dept. of Agroecosystem Research, University of Bayreuth, 95440 Bayreuth, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Weinheim</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-02</dateIssued>
<dateValid encoding="w3cdtf">2009-03-25</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">8</extent>
<extent unit="tables">3</extent>
<extent unit="references">61</extent>
</physicalDescription>
<abstract lang="en">The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.</abstract>
<note type="funding">Deutsche Forschungsgemeinschaft (DFG)</note>
<subject lang="en">
<genre>keywords</genre>
<topic>amino acids</topic>
<topic>carbohydrates</topic>
<topic>carboxylates</topic>
<topic>14C budget</topic>
<topic>maize</topic>
<topic>HPLC</topic>
<topic>rhizodeposition</topic>
<topic>composition</topic>
<topic>Py‐FIMS</topic>
<topic>methods</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Plant Nutrition and Soil Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Z. Pflanzenernähr. Bodenk.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Regular Article</topic>
</subject>
<identifier type="ISSN">1436-8730</identifier>
<identifier type="eISSN">1522-2624</identifier>
<identifier type="DOI">10.1002/(ISSN)1522-2624</identifier>
<identifier type="PublisherID">JPLN</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>173</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>67</start>
<end>79</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">168EA26325F3FE3DD581D1867E1931FBB6801487</identifier>
<identifier type="DOI">10.1002/jpln.200800293</identifier>
<identifier type="ArticleID">JPLN200800293</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001A10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:168EA26325F3FE3DD581D1867E1931FBB6801487
   |texte=   Rhizodeposition of maize: Short‐term carbon budget and composition
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024