Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology

Identifieur interne : 001957 ( Istex/Corpus ); précédent : 001956; suivant : 001958

Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology

Auteurs : Anja M. Billing ; Fred Fack ; Jenny Renaut ; Christophe M. Olinger ; Andrea B. Schote ; Jonathan D. Turner ; Claude P. Muller

Source :

RBID : ISTEX:F07F97219D30654A52E9FDE4822183C262C2B77C

English descriptors

Abstract

The glucocorticoid (GC) cortisol, the main mediator of the hypothalamic‐pituitary‐adrenal axis has many implications in metabolism, stress response and the immune system. Its function is mediated via binding to the glucocorticoid receptor (GR), a member of the superfamily of ligand‐activated nuclear hormone receptors. The activity of the ligated GR results from its binding as a transcription factor to glucocorticoid response elements (GREs). Two‐dimensional gel electrophoresis with DIGE (fluorescence difference gel electrophoresis) technology was applied to study the effects of cortisol on the human THP‐1 monocytic cell line. A total of 28 cortisol‐modulated proteins were identified belonging to five functional groups: cytoskeleton (8), chaperones (9), immune response (4), metabolism (3) and transcription/translation (4). Their corresponding genes were screened for putative GREs in their + 10 kb/− 0.2 kb promoter regions including all alternative promoters available within the Database for Transcription Start Sites (DBTSS). FKBP51, known to be induced by cortisol, was identified as the strongest differentially expressed protein, and contains the highest number of strict GREs. Genomic analysis of five alternative FKBP5 promoter regions suggests GC inducibility of all transcripts. Additionally, proteomics (2D DIGE and 2D immunoblotting) revealed the existence of several FKBP51 isoforms, which were not previously described. To our knowledge this is the first proteomic study that addresses the effects of cortisol on immune cells. FKBP51 isoforms found on the gel map were linked to alternative promoter usage on the genetic level, successfully correlating both the specific proteomic and genomic findings. Copyright © 2007 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/jms.1270

Links to Exploration step

ISTEX:F07F97219D30654A52E9FDE4822183C262C2B77C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
<author>
<name sortKey="Billing, Anja M" sort="Billing, Anja M" uniqKey="Billing A" first="Anja M." last="Billing">Anja M. Billing</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fack, Fred" sort="Fack, Fred" uniqKey="Fack F" first="Fred" last="Fack">Fred Fack</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
<affiliation>
<mods:affiliation>Department of Environment and Agrobiotechnologies, Centre de Recherche Public‐Gabriel Lippmann, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olinger, Christophe M" sort="Olinger, Christophe M" uniqKey="Olinger C" first="Christophe M." last="Olinger">Christophe M. Olinger</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schote, Andrea B" sort="Schote, Andrea B" uniqKey="Schote A" first="Andrea B." last="Schote">Andrea B. Schote</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turner, Jonathan D" sort="Turner, Jonathan D" uniqKey="Turner J" first="Jonathan D." last="Turner">Jonathan D. Turner</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Claude P" sort="Muller, Claude P" uniqKey="Muller C" first="Claude P." last="Muller">Claude P. Muller</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>20A, rue Auguste Lumière, L‐1950 Luxembourg, Luxembourg.===</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F07F97219D30654A52E9FDE4822183C262C2B77C</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1002/jms.1270</idno>
<idno type="url">https://api.istex.fr/document/F07F97219D30654A52E9FDE4822183C262C2B77C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001957</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001957</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
<author>
<name sortKey="Billing, Anja M" sort="Billing, Anja M" uniqKey="Billing A" first="Anja M." last="Billing">Anja M. Billing</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fack, Fred" sort="Fack, Fred" uniqKey="Fack F" first="Fred" last="Fack">Fred Fack</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Renaut, Jenny" sort="Renaut, Jenny" uniqKey="Renaut J" first="Jenny" last="Renaut">Jenny Renaut</name>
<affiliation>
<mods:affiliation>Department of Environment and Agrobiotechnologies, Centre de Recherche Public‐Gabriel Lippmann, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Olinger, Christophe M" sort="Olinger, Christophe M" uniqKey="Olinger C" first="Christophe M." last="Olinger">Christophe M. Olinger</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schote, Andrea B" sort="Schote, Andrea B" uniqKey="Schote A" first="Andrea B." last="Schote">Andrea B. Schote</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Turner, Jonathan D" sort="Turner, Jonathan D" uniqKey="Turner J" first="Jonathan D." last="Turner">Jonathan D. Turner</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Claude P" sort="Muller, Claude P" uniqKey="Muller C" first="Claude P." last="Muller">Claude P. Muller</name>
<affiliation>
<mods:affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>20A, rue Auguste Lumière, L‐1950 Luxembourg, Luxembourg.===</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Mass Spectrometry</title>
<title level="j" type="abbrev">J. Mass Spectrom.</title>
<idno type="ISSN">1076-5174</idno>
<idno type="eISSN">1096-9888</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2007-11">2007-11</date>
<biblScope unit="volume">42</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1433">1433</biblScope>
<biblScope unit="page" to="1444">1444</biblScope>
</imprint>
<idno type="ISSN">1076-5174</idno>
</series>
<idno type="istex">F07F97219D30654A52E9FDE4822183C262C2B77C</idno>
<idno type="DOI">10.1002/jms.1270</idno>
<idno type="ArticleID">JMS1270</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1076-5174</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>2D DIGE</term>
<term>FKBP51</term>
<term>alternative promoters</term>
<term>cortisol</term>
<term>glucocorticoid receptor</term>
<term>glucocorticoid response element</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The glucocorticoid (GC) cortisol, the main mediator of the hypothalamic‐pituitary‐adrenal axis has many implications in metabolism, stress response and the immune system. Its function is mediated via binding to the glucocorticoid receptor (GR), a member of the superfamily of ligand‐activated nuclear hormone receptors. The activity of the ligated GR results from its binding as a transcription factor to glucocorticoid response elements (GREs). Two‐dimensional gel electrophoresis with DIGE (fluorescence difference gel electrophoresis) technology was applied to study the effects of cortisol on the human THP‐1 monocytic cell line. A total of 28 cortisol‐modulated proteins were identified belonging to five functional groups: cytoskeleton (8), chaperones (9), immune response (4), metabolism (3) and transcription/translation (4). Their corresponding genes were screened for putative GREs in their + 10 kb/− 0.2 kb promoter regions including all alternative promoters available within the Database for Transcription Start Sites (DBTSS). FKBP51, known to be induced by cortisol, was identified as the strongest differentially expressed protein, and contains the highest number of strict GREs. Genomic analysis of five alternative FKBP5 promoter regions suggests GC inducibility of all transcripts. Additionally, proteomics (2D DIGE and 2D immunoblotting) revealed the existence of several FKBP51 isoforms, which were not previously described. To our knowledge this is the first proteomic study that addresses the effects of cortisol on immune cells. FKBP51 isoforms found on the gel map were linked to alternative promoter usage on the genetic level, successfully correlating both the specific proteomic and genomic findings. Copyright © 2007 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Anja M. Billing</name>
<affiliations>
<json:string>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</json:string>
<json:string>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fred Fack</name>
<affiliations>
<json:string>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jenny Renaut</name>
<affiliations>
<json:string>Department of Environment and Agrobiotechnologies, Centre de Recherche Public‐Gabriel Lippmann, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christophe M. Olinger</name>
<affiliations>
<json:string>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</json:string>
</affiliations>
</json:item>
<json:item>
<name>Andrea B. Schote</name>
<affiliations>
<json:string>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</json:string>
<json:string>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jonathan D. Turner</name>
<affiliations>
<json:string>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</json:string>
<json:string>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Claude P. Muller</name>
<affiliations>
<json:string>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</json:string>
<json:string>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</json:string>
<json:string>20A, rue Auguste Lumière, L‐1950 Luxembourg, Luxembourg.===</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>2D DIGE</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cortisol</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glucocorticoid response element</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FKBP51</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>alternative promoters</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glucocorticoid receptor</value>
</json:item>
</subject>
<articleId>
<json:string>JMS1270</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The glucocorticoid (GC) cortisol, the main mediator of the hypothalamic‐pituitary‐adrenal axis has many implications in metabolism, stress response and the immune system. Its function is mediated via binding to the glucocorticoid receptor (GR), a member of the superfamily of ligand‐activated nuclear hormone receptors. The activity of the ligated GR results from its binding as a transcription factor to glucocorticoid response elements (GREs). Two‐dimensional gel electrophoresis with DIGE (fluorescence difference gel electrophoresis) technology was applied to study the effects of cortisol on the human THP‐1 monocytic cell line. A total of 28 cortisol‐modulated proteins were identified belonging to five functional groups: cytoskeleton (8), chaperones (9), immune response (4), metabolism (3) and transcription/translation (4). Their corresponding genes were screened for putative GREs in their + 10 kb/− 0.2 kb promoter regions including all alternative promoters available within the Database for Transcription Start Sites (DBTSS). FKBP51, known to be induced by cortisol, was identified as the strongest differentially expressed protein, and contains the highest number of strict GREs. Genomic analysis of five alternative FKBP5 promoter regions suggests GC inducibility of all transcripts. Additionally, proteomics (2D DIGE and 2D immunoblotting) revealed the existence of several FKBP51 isoforms, which were not previously described. To our knowledge this is the first proteomic study that addresses the effects of cortisol on immune cells. FKBP51 isoforms found on the gel map were linked to alternative promoter usage on the genetic level, successfully correlating both the specific proteomic and genomic findings. Copyright © 2007 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1768</abstractCharCount>
<pdfWordCount>7036</pdfWordCount>
<pdfCharCount>44231</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>250</abstractWordCount>
</qualityIndicators>
<title>Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>EH Stolte</name>
</json:item>
<json:item>
<name>BM van Kemenade</name>
</json:item>
<json:item>
<name>HF Savelkoul</name>
</json:item>
<json:item>
<name>G Flik</name>
</json:item>
</author>
<host>
<volume>190</volume>
<pages>
<first>17</first>
</pages>
<author></author>
<title>Journal of Endocrinology</title>
</host>
<title>Evolution of glucocorticoid receptors with different glucocorticoid sensitivity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GP Chrousos</name>
</json:item>
</author>
<host>
<volume>332</volume>
<pages>
<first>1351</first>
</pages>
<author></author>
<title>The New England Journal of Medicine</title>
</host>
<title>The hypothalamic‐pituitary‐adrenal axis and immune‐mediated inflammation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PS Gaynon</name>
</json:item>
<json:item>
<name>AL Carrel</name>
</json:item>
</author>
<host>
<volume>457</volume>
<pages>
<first>593</first>
</pages>
<author></author>
<title>Advances in Experimental Medicine and Biology</title>
</host>
<title>Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>EM Reiche</name>
</json:item>
<json:item>
<name>HK Morimoto</name>
</json:item>
<json:item>
<name>SM Nunes</name>
</json:item>
</author>
<host>
<volume>17</volume>
<pages>
<first>515</first>
</pages>
<author></author>
<title>International Review of Psychiatry</title>
</host>
<title>Stress and depression‐induced immune dysfunction: implications for the development and progression of cancer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>EM Reiche</name>
</json:item>
<json:item>
<name>SO Nunes</name>
</json:item>
<json:item>
<name>HK Morimoto</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<first>617</first>
</pages>
<author></author>
<title>The Lancet Oncology</title>
</host>
<title>Stress, depression, the immune system, and cancer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JI Webster</name>
</json:item>
<json:item>
<name>L Tonelli</name>
</json:item>
<json:item>
<name>EM Sternberg</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<first>125</first>
</pages>
<author></author>
<title>Annual Review of Immunology</title>
</host>
<title>Neuroendocrine regulation of immunity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>WB Pratt</name>
</json:item>
<json:item>
<name>DO Toft</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<first>306</first>
</pages>
<author></author>
<title>Endocrine Reviews</title>
</host>
<title>Steroid receptor interactions with heat shock protein and immunophilin chaperones</title>
</json:item>
<json:item>
<author>
<json:item>
<name>WB Pratt</name>
</json:item>
<json:item>
<name>DO Toft</name>
</json:item>
</author>
<host>
<volume>228</volume>
<pages>
<first>111</first>
</pages>
<author></author>
<title>Experimental Biology and Medicine (Maywood)</title>
</host>
<title>Regulation of signaling protein function and trafficking by the hsp90/hsp70‐based chaperone machinery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Beato</name>
</json:item>
<json:item>
<name>P Herrlich</name>
</json:item>
<json:item>
<name>G Schutz</name>
</json:item>
</author>
<host>
<volume>83</volume>
<pages>
<first>851</first>
</pages>
<author></author>
<title>Cell</title>
</host>
<title>Steroid hormone receptors: many actors in search of a plot</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Horie‐Inoue</name>
</json:item>
<json:item>
<name>K Takayama</name>
</json:item>
<json:item>
<name>HU Bono</name>
</json:item>
<json:item>
<name>Y Ouchi</name>
</json:item>
<json:item>
<name>Y Okazaki</name>
</json:item>
<json:item>
<name>S Inoue</name>
</json:item>
</author>
<host>
<volume>339</volume>
<pages>
<first>99</first>
</pages>
<author></author>
<title>Biochemical and Biophysical Research Communications</title>
</host>
<title>Identification of novel steroid target genes through the combination of bioinformatics and functional analysis of hormone response elements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CC Nelson</name>
</json:item>
<json:item>
<name>SC Hendy</name>
</json:item>
<json:item>
<name>RJ Shukin</name>
</json:item>
<json:item>
<name>H Cheng</name>
</json:item>
<json:item>
<name>N Bruchovsky</name>
</json:item>
<json:item>
<name>BF Koop</name>
</json:item>
<json:item>
<name>PS Rennie</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<first>2090</first>
</pages>
<author></author>
<title>Molecular Endocrinology</title>
</host>
<title>Determinants of DNA sequence specificity of the androgen, progesterone, and glucocorticoid receptors: evidence for differential steroid receptor response elements</title>
</json:item>
<json:item>
<author>
<json:item>
<name>OJ Schoneveld</name>
</json:item>
<json:item>
<name>IC Gaemers</name>
</json:item>
<json:item>
<name>WH Lamers</name>
</json:item>
</author>
<host>
<volume>1680</volume>
<pages>
<first>114</first>
</pages>
<author></author>
<title>Biochimica et Biophysica Acta</title>
</host>
<title>Mechanisms of glucocorticoid signalling</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H Vermeer</name>
</json:item>
<json:item>
<name>BI Hendriks‐Stegeman</name>
</json:item>
<json:item>
<name>B van der Burg</name>
</json:item>
<json:item>
<name>SC van Buul‐Offers</name>
</json:item>
<json:item>
<name>M Jansen</name>
</json:item>
</author>
<host>
<volume>88</volume>
<pages>
<first>277</first>
</pages>
<author></author>
<title>The Journal of Clinical Endocrinology and Metabolism</title>
</host>
<title>Glucocorticoid‐induced increase in lymphocytic FKBP51 messenger ribonucleic acid expression: a potential marker for glucocorticoid sensitivity, potency, and bioavailability</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KJ Livak</name>
</json:item>
<json:item>
<name>TD Schmittgen</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<first>402</first>
</pages>
<author></author>
<title>Methods</title>
</host>
<title>Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Rush</name>
</json:item>
<json:item>
<name>A Moritz</name>
</json:item>
<json:item>
<name>KA Lee</name>
</json:item>
<json:item>
<name>A Guo</name>
</json:item>
<json:item>
<name>VL Goss</name>
</json:item>
<json:item>
<name>EJ Spek</name>
</json:item>
<json:item>
<name>H Zhang</name>
</json:item>
<json:item>
<name>XM Zha</name>
</json:item>
<json:item>
<name>RD Polakiewicz</name>
</json:item>
<json:item>
<name>MJ Comb</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<first>94</first>
</pages>
<author></author>
<title>Nature Biotechnology</title>
</host>
<title>Immunoaffinity profiling of tyrosine phosphorylation in cancer cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Shiroo</name>
</json:item>
<json:item>
<name>K Matsushima</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<first>13</first>
</pages>
<author></author>
<title>Cytokine</title>
</host>
<title>Enhanced phosphorylation of 65 and 74 kDa proteins by tumor necrosis factor and interleukin‐1 in human peripheral blood mononuclear cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A Takaoka</name>
</json:item>
<json:item>
<name>H Yanai</name>
</json:item>
<json:item>
<name>S Kondo</name>
</json:item>
<json:item>
<name>G Duncan</name>
</json:item>
<json:item>
<name>H Negishi</name>
</json:item>
<json:item>
<name>T Mizutani</name>
</json:item>
<json:item>
<name>S Kano</name>
</json:item>
<json:item>
<name>K Honda</name>
</json:item>
<json:item>
<name>Y Ohba</name>
</json:item>
<json:item>
<name>TW Mak</name>
</json:item>
<json:item>
<name>T Taniguchi</name>
</json:item>
</author>
<host>
<volume>434</volume>
<pages>
<first>243</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Integral role of IRF‐5 in the gene induction programme activated by Toll‐like receptors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>GD Barish</name>
</json:item>
<json:item>
<name>M Downes</name>
</json:item>
<json:item>
<name>WA Alaynick</name>
</json:item>
<json:item>
<name>RT Yu</name>
</json:item>
<json:item>
<name>CB Ocampo</name>
</json:item>
<json:item>
<name>AL Bookout</name>
</json:item>
<json:item>
<name>DJ Mangelsdorf</name>
</json:item>
<json:item>
<name>RM Evans</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<first>2466</first>
</pages>
<author></author>
<title>Molecular Endocrinology</title>
</host>
<title>A nuclear receptor atlas: macrophage activation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>Y Suzuki</name>
</json:item>
<json:item>
<name>R Yamashita</name>
</json:item>
<json:item>
<name>M Shirota</name>
</json:item>
<json:item>
<name>Y Sakakibara</name>
</json:item>
<json:item>
<name>J Chiba</name>
</json:item>
<json:item>
<name>J Mizushima‐Sugano</name>
</json:item>
<json:item>
<name>AE Kel</name>
</json:item>
<json:item>
<name>T Arakawa</name>
</json:item>
<json:item>
<name>P Carninci</name>
</json:item>
<json:item>
<name>J Kawai</name>
</json:item>
<json:item>
<name>Y Hayashizaki</name>
</json:item>
<json:item>
<name>T Takagi</name>
</json:item>
<json:item>
<name>K Nakai</name>
</json:item>
<json:item>
<name>S Sugano</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<first>429</first>
</pages>
<author></author>
<title>In Silico Biology</title>
</host>
<title>Large‐scale collection and characterization of promoters of human and mouse genes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T Zhang</name>
</json:item>
<json:item>
<name>P Haws</name>
</json:item>
<json:item>
<name>Q Wu</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<first>79</first>
</pages>
<author></author>
<title>Genome Research</title>
</host>
<title>Multiple variable first exons: a mechanism for cell‐ and tissue‐specific gene regulation</title>
</json:item>
<json:item>
<author>
<json:item>
<name>JD Turner</name>
</json:item>
<json:item>
<name>CP Muller</name>
</json:item>
</author>
<host>
<volume>35</volume>
<pages>
<first>283</first>
</pages>
<author></author>
<title>Journal of Molecular Endocrinology</title>
</host>
<title>Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: identification, and tissue distribution of multiple new human exon 1</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E Presul</name>
</json:item>
<json:item>
<name>S Schmidt</name>
</json:item>
<json:item>
<name>R Kofler</name>
</json:item>
<json:item>
<name>A Helmberg</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<first>79</first>
</pages>
<author></author>
<title>Journal of Molecular Endocrinology</title>
</host>
<title>Identification, tissue expression, and glucocorticoid responsiveness of alternative first exons of the human glucocorticoid receptor</title>
</json:item>
<json:item>
<author>
<json:item>
<name>CS Lin</name>
</json:item>
<json:item>
<name>A Lau</name>
</json:item>
<json:item>
<name>CC Yeh</name>
</json:item>
<json:item>
<name>CH Chang</name>
</json:item>
<json:item>
<name>TF Lue</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<first>1</first>
</pages>
<author></author>
<title>DNA and Cell Biology</title>
</host>
<title>Upregulation of L‐plastin gene by testosterone in breast and prostate cancer cells: identification of three cooperative androgen receptor‐binding sequences</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Zheng</name>
</json:item>
<json:item>
<name>N Rudra‐Ganguly</name>
</json:item>
<json:item>
<name>GJ Miller</name>
</json:item>
<json:item>
<name>KA Moffatt</name>
</json:item>
<json:item>
<name>RJ Cote</name>
</json:item>
<json:item>
<name>P Roy‐Burman</name>
</json:item>
</author>
<host>
<volume>150</volume>
<pages>
<first>2009</first>
</pages>
<author></author>
<title>American Journal of Pathology</title>
</host>
<title>Steroid hormone induction and expression patterns of L‐plastin in normal and carcinomatous prostate tissues</title>
</json:item>
<json:item>
<author>
<json:item>
<name>DF Smith</name>
</json:item>
<json:item>
<name>LE Faber</name>
</json:item>
<json:item>
<name>DO Toft</name>
</json:item>
</author>
<host>
<volume>265</volume>
<pages>
<first>3996</first>
</pages>
<author></author>
<title>Journal of Biological Chemistry</title>
</host>
<title>Purification of unactivated progesterone receptor and identification of novel receptor‐associated proteins</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E Hedman</name>
</json:item>
<json:item>
<name>C Widen</name>
</json:item>
<json:item>
<name>A Asadi</name>
</json:item>
<json:item>
<name>I Dinnetz</name>
</json:item>
<json:item>
<name>WP Schroder</name>
</json:item>
<json:item>
<name>JA Gustafsson</name>
</json:item>
<json:item>
<name>AC Wikstrom</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<first>3114</first>
</pages>
<author></author>
<title>Proteomics</title>
</host>
<title>Proteomic identification of glucocorticoid receptor interacting proteins</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G Baughman</name>
</json:item>
<json:item>
<name>GJ Wiederrecht</name>
</json:item>
<json:item>
<name>F Chang</name>
</json:item>
<json:item>
<name>MM Martin</name>
</json:item>
<json:item>
<name>S Bourgeois</name>
</json:item>
</author>
<host>
<volume>232</volume>
<pages>
<first>437</first>
</pages>
<author></author>
<title>Biochemical and Biophysical Research Communications</title>
</host>
<title>Tissue distribution and abundance of human FKBP51, and FK506‐binding protein that can mediate calcineurin inhibition</title>
</json:item>
<json:item>
<author>
<json:item>
<name>PD Reynolds</name>
</json:item>
<json:item>
<name>Y Ruan</name>
</json:item>
<json:item>
<name>DF Smith</name>
</json:item>
<json:item>
<name>JG Scammell</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<first>663</first>
</pages>
<author></author>
<title>The Journal of Clinical Endocrinology and Metabolism</title>
</host>
<title>Glucocorticoid resistance in the squirrel monkey is associated with overexpression of the immunophilin FKBP51</title>
</json:item>
<json:item>
<author>
<json:item>
<name>WB Denny</name>
</json:item>
<json:item>
<name>DL Valentine</name>
</json:item>
<json:item>
<name>PD Reynolds</name>
</json:item>
<json:item>
<name>DF Smith</name>
</json:item>
<json:item>
<name>JG Scammell</name>
</json:item>
</author>
<host>
<volume>141</volume>
<pages>
<first>4107</first>
</pages>
<author></author>
<title>Endocrinology</title>
</host>
<title>Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding</title>
</json:item>
<json:item>
<author>
<json:item>
<name>SA Beausoleil</name>
</json:item>
<json:item>
<name>M Jedrychowski</name>
</json:item>
<json:item>
<name>D Schwartz</name>
</json:item>
<json:item>
<name>JE Elias</name>
</json:item>
<json:item>
<name>J Villen</name>
</json:item>
<json:item>
<name>J Li</name>
</json:item>
<json:item>
<name>MA Cohn</name>
</json:item>
<json:item>
<name>LC Cantley</name>
</json:item>
<json:item>
<name>SP Gygi</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<first>12 130</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</host>
<title>Large‐scale characterization of HeLa cell nuclear phosphoproteins</title>
</json:item>
<json:item>
<author>
<json:item>
<name>TR Hubler</name>
</json:item>
<json:item>
<name>JG Scammell</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<first>243</first>
</pages>
<author></author>
<title>Cell Stress and Chaperones</title>
</host>
<title>Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids</title>
</json:item>
<json:item>
<author>
<json:item>
<name>EB Binder</name>
</json:item>
<json:item>
<name>D Salyakina</name>
</json:item>
<json:item>
<name>P Lichtner</name>
</json:item>
<json:item>
<name>GM Wochnik</name>
</json:item>
<json:item>
<name>M Ising</name>
</json:item>
<json:item>
<name>B Putz</name>
</json:item>
<json:item>
<name>S Papiol</name>
</json:item>
<json:item>
<name>S Seaman</name>
</json:item>
<json:item>
<name>S Lucae</name>
</json:item>
<json:item>
<name>MA Kohli</name>
</json:item>
<json:item>
<name>T Nickel</name>
</json:item>
<json:item>
<name>HE Kunzel</name>
</json:item>
<json:item>
<name>B Fuchs</name>
</json:item>
<json:item>
<name>M Majer</name>
</json:item>
<json:item>
<name>A Pfennig</name>
</json:item>
<json:item>
<name>N Kern</name>
</json:item>
<json:item>
<name>J Brunner</name>
</json:item>
<json:item>
<name>S Modell</name>
</json:item>
<json:item>
<name>T Baghai</name>
</json:item>
<json:item>
<name>T Deiml</name>
</json:item>
<json:item>
<name>P Zill</name>
</json:item>
<json:item>
<name>B Bondy</name>
</json:item>
<json:item>
<name>R Rupprecht</name>
</json:item>
<json:item>
<name>T Messer</name>
</json:item>
<json:item>
<name>O Kohnlein</name>
</json:item>
<json:item>
<name>H Dabitz</name>
</json:item>
<json:item>
<name>T Bruckl</name>
</json:item>
<json:item>
<name>N Muller</name>
</json:item>
<json:item>
<name>H Pfister</name>
</json:item>
<json:item>
<name>R Lieb</name>
</json:item>
<json:item>
<name>JC Mueller</name>
</json:item>
<json:item>
<name>E Lohmussaar</name>
</json:item>
<json:item>
<name>TM Strom</name>
</json:item>
<json:item>
<name>T Bettecken</name>
</json:item>
<json:item>
<name>T Meitinger</name>
</json:item>
<json:item>
<name>M Uhr</name>
</json:item>
<json:item>
<name>T Rein</name>
</json:item>
<json:item>
<name>F Holsboer</name>
</json:item>
<json:item>
<name>B Muller‐Myhsok</name>
</json:item>
</author>
<host>
<volume>36</volume>
<pages>
<first>1319</first>
</pages>
<author></author>
<title>Nature Genetics</title>
</host>
<title>Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Gawlik</name>
</json:item>
<json:item>
<name>K Moller‐Ehrlich</name>
</json:item>
<json:item>
<name>M Mende</name>
</json:item>
<json:item>
<name>M Jovnerovski</name>
</json:item>
<json:item>
<name>S Jung</name>
</json:item>
<json:item>
<name>B Jabs</name>
</json:item>
<json:item>
<name>M Knapp</name>
</json:item>
<json:item>
<name>G Stoeber</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<first>52</first>
</pages>
<author></author>
<title>BMC Psychiatry</title>
</host>
<title>Is FKBP5 a genetic marker of affective psychosis? A case control study and analysis of disease related traits</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T Kato</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<first>3</first>
</pages>
<author></author>
<title>Psychiatry and Clinical Neurosciences</title>
</host>
<title>Molecular genetics of bipolar disorder and depression</title>
</json:item>
<json:item>
<author>
<json:item>
<name>KC Koenen</name>
</json:item>
<json:item>
<name>G Saxe</name>
</json:item>
<json:item>
<name>S Purcell</name>
</json:item>
<json:item>
<name>JW Smoller</name>
</json:item>
<json:item>
<name>D Bartholomew</name>
</json:item>
<json:item>
<name>A Miller</name>
</json:item>
<json:item>
<name>E Hall</name>
</json:item>
<json:item>
<name>J Kaplow</name>
</json:item>
<json:item>
<name>M Bosquet</name>
</json:item>
<json:item>
<name>S Moulton</name>
</json:item>
<json:item>
<name>C Baldwin</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<first>1058</first>
</pages>
<author></author>
<title>Molecular Psychiatry</title>
</host>
<title>Polymorphisms in FKBP5 are associated with peritraumatic dissociation in medically injured children</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Oishi</name>
</json:item>
<json:item>
<name>K Miyazaki</name>
</json:item>
<json:item>
<name>K Kadota</name>
</json:item>
<json:item>
<name>R Kikuno</name>
</json:item>
<json:item>
<name>T Nagase</name>
</json:item>
<json:item>
<name>G Atsumi</name>
</json:item>
<json:item>
<name>N Ohkura</name>
</json:item>
<json:item>
<name>T Azama</name>
</json:item>
<json:item>
<name>M Mesaki</name>
</json:item>
<json:item>
<name>S Yukimasa</name>
</json:item>
<json:item>
<name>H Kobayashi</name>
</json:item>
<json:item>
<name>C Iitaka</name>
</json:item>
<json:item>
<name>T Umehara</name>
</json:item>
<json:item>
<name>M Horikoshi</name>
</json:item>
<json:item>
<name>T Kudo</name>
</json:item>
<json:item>
<name>Y Shimizu</name>
</json:item>
<json:item>
<name>M Yano</name>
</json:item>
<json:item>
<name>M Monden</name>
</json:item>
<json:item>
<name>K Machida</name>
</json:item>
<json:item>
<name>J Matsuda</name>
</json:item>
<json:item>
<name>S Horie</name>
</json:item>
<json:item>
<name>T Todo</name>
</json:item>
<json:item>
<name>N Ishida</name>
</json:item>
</author>
<host>
<volume>278</volume>
<pages>
<first>41 519</first>
</pages>
<author></author>
<title>Journal of Biological Chemistry</title>
</host>
<title>Genome‐wide expression analysis of mouse liver reveals CLOCK‐regulated circadian output genes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K Honda</name>
</json:item>
<json:item>
<name>T Taniguchi</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<first>644</first>
</pages>
<author></author>
<title>Nature Reviews Immunology</title>
</host>
<title>IRFs: master regulators of signalling by Toll‐like receptors and cytosolic pattern‐recognition receptors</title>
</json:item>
<json:item>
<author>
<json:item>
<name>RR Graham</name>
</json:item>
<json:item>
<name>SV Kozyrev</name>
</json:item>
<json:item>
<name>EC Baechler</name>
</json:item>
<json:item>
<name>MV Reddy</name>
</json:item>
<json:item>
<name>RM Plenge</name>
</json:item>
<json:item>
<name>JW Bauer</name>
</json:item>
<json:item>
<name>WA Ortmann</name>
</json:item>
<json:item>
<name>T Koeuth</name>
</json:item>
<json:item>
<name>MF Gonzalez Escribano</name>
</json:item>
<json:item>
<name>B Pons‐Estel</name>
</json:item>
<json:item>
<name>M Petri</name>
</json:item>
<json:item>
<name>M Daly</name>
</json:item>
<json:item>
<name>PK Gregersen</name>
</json:item>
<json:item>
<name>J Martin</name>
</json:item>
<json:item>
<name>D Altshuler</name>
</json:item>
<json:item>
<name>TW Behrens</name>
</json:item>
<json:item>
<name>ME Alarcon‐Riquelme</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<first>550</first>
</pages>
<author></author>
<title>Nature Genetics</title>
</host>
<title>A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V Pascual</name>
</json:item>
<json:item>
<name>L Farkas</name>
</json:item>
<json:item>
<name>J Banchereau</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<first>676</first>
</pages>
<author></author>
<title>Current Opinion in Immunology</title>
</host>
<title>Systemic lupus erythematosus: all roads lead to type I interferons</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Galon</name>
</json:item>
<json:item>
<name>D Franchimont</name>
</json:item>
<json:item>
<name>N Hiroi</name>
</json:item>
<json:item>
<name>G Frey</name>
</json:item>
<json:item>
<name>A Boettner</name>
</json:item>
<json:item>
<name>M Ehrhart‐Bornstein</name>
</json:item>
<json:item>
<name>JJ O'Shea</name>
</json:item>
<json:item>
<name>GP Chrousos</name>
</json:item>
<json:item>
<name>SR Bornstein</name>
</json:item>
</author>
<host>
<volume>16</volume>
<pages>
<first>61</first>
</pages>
<author></author>
<title>The FASEB Journal</title>
</host>
<title>Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F Levy</name>
</json:item>
<json:item>
<name>L Burri</name>
</json:item>
<json:item>
<name>S Morel</name>
</json:item>
<json:item>
<name>AL Peitrequin</name>
</json:item>
<json:item>
<name>N Levy</name>
</json:item>
<json:item>
<name>A Bachi</name>
</json:item>
<json:item>
<name>U Hellman</name>
</json:item>
<json:item>
<name>BJ Van den Eynde</name>
</json:item>
<json:item>
<name>C Servis</name>
</json:item>
</author>
<host>
<volume>169</volume>
<pages>
<first>4161</first>
</pages>
<author></author>
<title>Journal of Immunology</title>
</host>
<title>The final N‐terminal trimming of a subaminoterminal proline‐containing HLA class I‐restricted antigenic peptide in the cytosol is mediated by two peptidases</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M Beato</name>
</json:item>
<json:item>
<name>G Chalepakis</name>
</json:item>
<json:item>
<name>M Schauer</name>
</json:item>
<json:item>
<name>EP Slater</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<first>737</first>
</pages>
<author></author>
<title>Journal of Steroid Biochemistry</title>
</host>
<title>DNA regulatory elements for steroid hormones</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J Drouin</name>
</json:item>
<json:item>
<name>MA Trifiro</name>
</json:item>
<json:item>
<name>RK Plante</name>
</json:item>
<json:item>
<name>M Nemer</name>
</json:item>
<json:item>
<name>P Eriksson</name>
</json:item>
<json:item>
<name>O Wrange</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<first>5305</first>
</pages>
<author></author>
<title>Molecular and Cellular Biology</title>
</host>
<title>Glucocorticoid receptor binding to a specific DNA sequence is required for hormone‐dependent repression of pro‐opiomelanocortin gene transcription</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>42</volume>
<publisherId>
<json:string>JMS</json:string>
</publisherId>
<pages>
<total>12</total>
<last>1444</last>
<first>1433</first>
</pages>
<issn>
<json:string>1076-5174</json:string>
</issn>
<issue>11</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9888</json:string>
</eissn>
<title>Journal of Mass Spectrometry</title>
<doi>
<json:string>10.1002/(ISSN)1096-9888c</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>spectroscopy</json:string>
<json:string>chemistry, analytical</json:string>
<json:string>biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>chemistry</json:string>
<json:string>analytical chemistry</json:string>
</scienceMetrix>
</categories>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1002/jms.1270</json:string>
</doi>
<id>F07F97219D30654A52E9FDE4822183C262C2B77C</id>
<score>0.7808819</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/F07F97219D30654A52E9FDE4822183C262C2B77C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/F07F97219D30654A52E9FDE4822183C262C2B77C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/F07F97219D30654A52E9FDE4822183C262C2B77C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2007 John Wiley & Sons, Ltd.</p>
</availability>
<date>2007</date>
</publicationStmt>
<notesStmt>
<note>Ministry of Culture, Higher Education, and Research, Luxembourg</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
<author xml:id="author-1">
<persName>
<forename type="first">Anja M.</forename>
<surname>Billing</surname>
</persName>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Fred</forename>
<surname>Fack</surname>
</persName>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Jenny</forename>
<surname>Renaut</surname>
</persName>
<affiliation>Department of Environment and Agrobiotechnologies, Centre de Recherche Public‐Gabriel Lippmann, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Christophe M.</forename>
<surname>Olinger</surname>
</persName>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Andrea B.</forename>
<surname>Schote</surname>
</persName>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">Jonathan D.</forename>
<surname>Turner</surname>
</persName>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">Claude P.</forename>
<surname>Muller</surname>
</persName>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
<affiliation>20A, rue Auguste Lumière, L‐1950 Luxembourg, Luxembourg.===</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Mass Spectrometry</title>
<title level="j" type="abbrev">J. Mass Spectrom.</title>
<idno type="pISSN">1076-5174</idno>
<idno type="eISSN">1096-9888</idno>
<idno type="DOI">10.1002/(ISSN)1096-9888c</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2007-11"></date>
<biblScope unit="volume">42</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1433">1433</biblScope>
<biblScope unit="page" to="1444">1444</biblScope>
</imprint>
</monogr>
<idno type="istex">F07F97219D30654A52E9FDE4822183C262C2B77C</idno>
<idno type="DOI">10.1002/jms.1270</idno>
<idno type="ArticleID">JMS1270</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2007</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The glucocorticoid (GC) cortisol, the main mediator of the hypothalamic‐pituitary‐adrenal axis has many implications in metabolism, stress response and the immune system. Its function is mediated via binding to the glucocorticoid receptor (GR), a member of the superfamily of ligand‐activated nuclear hormone receptors. The activity of the ligated GR results from its binding as a transcription factor to glucocorticoid response elements (GREs). Two‐dimensional gel electrophoresis with DIGE (fluorescence difference gel electrophoresis) technology was applied to study the effects of cortisol on the human THP‐1 monocytic cell line. A total of 28 cortisol‐modulated proteins were identified belonging to five functional groups: cytoskeleton (8), chaperones (9), immune response (4), metabolism (3) and transcription/translation (4). Their corresponding genes were screened for putative GREs in their + 10 kb/− 0.2 kb promoter regions including all alternative promoters available within the Database for Transcription Start Sites (DBTSS). FKBP51, known to be induced by cortisol, was identified as the strongest differentially expressed protein, and contains the highest number of strict GREs. Genomic analysis of five alternative FKBP5 promoter regions suggests GC inducibility of all transcripts. Additionally, proteomics (2D DIGE and 2D immunoblotting) revealed the existence of several FKBP51 isoforms, which were not previously described. To our knowledge this is the first proteomic study that addresses the effects of cortisol on immune cells. FKBP51 isoforms found on the gel map were linked to alternative promoter usage on the genetic level, successfully correlating both the specific proteomic and genomic findings. Copyright © 2007 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>2D DIGE</term>
</item>
<item>
<term>cortisol</term>
</item>
<item>
<term>glucocorticoid response element</term>
</item>
<item>
<term>FKBP51</term>
</item>
<item>
<term>alternative promoters</term>
</item>
<item>
<term>glucocorticoid receptor</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2007-04-13">Received</change>
<change when="2007-06-09">Registration</change>
<change when="2007-11">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/F07F97219D30654A52E9FDE4822183C262C2B77C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9888c</doi>
<issn type="print">1076-5174</issn>
<issn type="electronic">1096-9888</issn>
<idGroup>
<id type="product" value="JMS"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF MASS SPECTROMETRY">Journal of Mass Spectrometry</title>
<title type="short">J. Mass Spectrom.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="110">
<doi origin="wiley" registered="yes">10.1002/jms.v42:11</doi>
<titleGroup>
<title type="specialIssueTitle">Proteomics & Pathology</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="42">42</numbering>
<numbering type="journalIssue">11</numbering>
</numberingGroup>
<coverDate startDate="2007-11">November 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="60" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jms.1270</doi>
<idGroup>
<id type="unit" value="JMS1270"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2007 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2007-04-13"></event>
<event type="manuscriptAccepted" date="2007-06-09"></event>
<event type="firstOnline" date="2007-10-24"></event>
<event type="publishedOnlineFinalForm" date="2007-10-24"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-09"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1433</numbering>
<numbering type="pageLast">1444</numbering>
</numberingGroup>
<correspondenceTo>20A, rue Auguste Lumière, L‐1950 Luxembourg, Luxembourg.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JMS.JMS1270.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="43"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
<title type="short" xml:lang="en">Proteomics of monocytes after stress</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Anja M.</givenNames>
<familyName>Billing</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Fred</givenNames>
<familyName>Fack</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Jenny</givenNames>
<familyName>Renaut</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Christophe M.</givenNames>
<familyName>Olinger</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Andrea B.</givenNames>
<familyName>Schote</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Jonathan D.</givenNames>
<familyName>Turner</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1 #af2" corresponding="yes">
<personName>
<givenNames>Claude P.</givenNames>
<familyName>Muller</familyName>
</personName>
<contactDetails>
<email>Claude.Muller@LNS.ETAT.LU</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="LU" type="organization">
<unparsedAffiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="DE" type="organization">
<unparsedAffiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="LU" type="organization">
<unparsedAffiliation>Department of Environment and Agrobiotechnologies, Centre de Recherche Public‐Gabriel Lippmann, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">2D DIGE</keyword>
<keyword xml:id="kwd2">cortisol</keyword>
<keyword xml:id="kwd3">glucocorticoid response element</keyword>
<keyword xml:id="kwd4">FKBP51</keyword>
<keyword xml:id="kwd5">alternative promoters</keyword>
<keyword xml:id="kwd6">glucocorticoid receptor</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Ministry of Culture, Higher Education, and Research, Luxembourg</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The glucocorticoid (GC) cortisol, the main mediator of the hypothalamic‐pituitary‐adrenal axis has many implications in metabolism, stress response and the immune system. Its function is mediated via binding to the glucocorticoid receptor (GR), a member of the superfamily of ligand‐activated nuclear hormone receptors. The activity of the ligated GR results from its binding as a transcription factor to glucocorticoid response elements (GREs). Two‐dimensional gel electrophoresis with DIGE (fluorescence difference gel electrophoresis) technology was applied to study the effects of cortisol on the human THP‐1 monocytic cell line. A total of 28 cortisol‐modulated proteins were identified belonging to five functional groups: cytoskeleton (8), chaperones (9), immune response (4), metabolism (3) and transcription/translation (4). Their corresponding genes were screened for putative GREs in their + 10 kb/− 0.2 kb promoter regions including all alternative promoters available within the Database for Transcription Start Sites (DBTSS). FKBP51, known to be induced by cortisol, was identified as the strongest differentially expressed protein, and contains the highest number of strict GREs. Genomic analysis of five alternative
<i>FKBP5</i>
promoter regions suggests GC inducibility of all transcripts. Additionally, proteomics (2D DIGE and 2D immunoblotting) revealed the existence of several FKBP51 isoforms, which were not previously described. To our knowledge this is the first proteomic study that addresses the effects of cortisol on immune cells. FKBP51 isoforms found on the gel map were linked to alternative promoter usage on the genetic level, successfully correlating both the specific proteomic and genomic findings. Copyright © 2007 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Proteomics of monocytes after stress</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anja M.</namePart>
<namePart type="family">Billing</namePart>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred</namePart>
<namePart type="family">Fack</namePart>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jenny</namePart>
<namePart type="family">Renaut</namePart>
<affiliation>Department of Environment and Agrobiotechnologies, Centre de Recherche Public‐Gabriel Lippmann, 41, rue du Brill, L‐4422 Belvaux, Grand Duchy of Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christophe M.</namePart>
<namePart type="family">Olinger</namePart>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea B.</namePart>
<namePart type="family">Schote</namePart>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan D.</namePart>
<namePart type="family">Turner</namePart>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claude P.</namePart>
<namePart type="family">Muller</namePart>
<affiliation>Institute of Immunology, National Public Health Laboratory, 20A, rue Auguste Lumière, L‐1950 Luxembourg, Grand Duchy of Luxembourg</affiliation>
<affiliation>Graduate School of Psychobiology, University of Trier, Johanniterufer 15, D‐54290 Trier, Germany</affiliation>
<affiliation>20A, rue Auguste Lumière, L‐1950 Luxembourg, Luxembourg.===</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2007-11</dateIssued>
<dateCaptured encoding="w3cdtf">2007-04-13</dateCaptured>
<dateValid encoding="w3cdtf">2007-06-09</dateValid>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">1</extent>
<extent unit="references">43</extent>
</physicalDescription>
<abstract lang="en">The glucocorticoid (GC) cortisol, the main mediator of the hypothalamic‐pituitary‐adrenal axis has many implications in metabolism, stress response and the immune system. Its function is mediated via binding to the glucocorticoid receptor (GR), a member of the superfamily of ligand‐activated nuclear hormone receptors. The activity of the ligated GR results from its binding as a transcription factor to glucocorticoid response elements (GREs). Two‐dimensional gel electrophoresis with DIGE (fluorescence difference gel electrophoresis) technology was applied to study the effects of cortisol on the human THP‐1 monocytic cell line. A total of 28 cortisol‐modulated proteins were identified belonging to five functional groups: cytoskeleton (8), chaperones (9), immune response (4), metabolism (3) and transcription/translation (4). Their corresponding genes were screened for putative GREs in their + 10 kb/− 0.2 kb promoter regions including all alternative promoters available within the Database for Transcription Start Sites (DBTSS). FKBP51, known to be induced by cortisol, was identified as the strongest differentially expressed protein, and contains the highest number of strict GREs. Genomic analysis of five alternative FKBP5 promoter regions suggests GC inducibility of all transcripts. Additionally, proteomics (2D DIGE and 2D immunoblotting) revealed the existence of several FKBP51 isoforms, which were not previously described. To our knowledge this is the first proteomic study that addresses the effects of cortisol on immune cells. FKBP51 isoforms found on the gel map were linked to alternative promoter usage on the genetic level, successfully correlating both the specific proteomic and genomic findings. Copyright © 2007 John Wiley & Sons, Ltd.</abstract>
<note type="funding">Ministry of Culture, Higher Education, and Research, Luxembourg</note>
<subject lang="en">
<genre>keywords</genre>
<topic>2D DIGE</topic>
<topic>cortisol</topic>
<topic>glucocorticoid response element</topic>
<topic>FKBP51</topic>
<topic>alternative promoters</topic>
<topic>glucocorticoid receptor</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Mass Spectrometry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Mass Spectrom.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">1076-5174</identifier>
<identifier type="eISSN">1096-9888</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9888c</identifier>
<identifier type="PublisherID">JMS</identifier>
<part>
<date>2007</date>
<detail type="title">
<title>Proteomics & Pathology</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>42</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>1433</start>
<end>1444</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F07F97219D30654A52E9FDE4822183C262C2B77C</identifier>
<identifier type="DOI">10.1002/jms.1270</identifier>
<identifier type="ArticleID">JMS1270</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2007 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001957 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001957 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F07F97219D30654A52E9FDE4822183C262C2B77C
   |texte=   Proteomic analysis of the cortisol‐mediated stress response in THP‐1 monocytes using DIGE technology
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024