Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE

Identifieur interne : 001934 ( Istex/Corpus ); précédent : 001933; suivant : 001935

OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE

Auteurs : Mira Christen ; Joachim Kurtz ; Manfred Milinski

Source :

RBID : ISTEX:1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E

English descriptors

Abstract

Abstract.— The maintenance of two genetically distinct reproductive modes such as outcrossing and selfing within a population of animals or plants is still a matter of considerable debate. Hermaphroditic parasites often reproduce either alone by selfing or in pairs by outcrossing. They can be used as a model to study potential benefits of outcrossing. Any advantage from outcrossing may be important, especially in host‐parasite coevolution, but has not, to our knowledge, been studied yet in any parasite species. We studied the potential effect of outcrossing in a tapeworm, Schis‐tocephalus solidus, on both infection success and growth in its first intermediate host, the copepod Macrocyclops albidus. Tapeworms that had been obtained from natural populations of three‐spined sticklebacks (Gasterosteus acu‐leatus) were allowed to reproduce either alone or in pairs, in an in vitro system that replaced the final host's gut. This resulted in either selfed or outcrossed offspring, respectively. In one part of the experiment, copepods were exposed to either selfed or outcrossed parasites, in a second part to both types simultaneously, in order to study the effect of competition between them. To discriminate parasites of either origin within the same host, a novel method for fluorescent vital labeling was used. We show here for the first time that outcrossed parasites had a higher infection success and faster development in the host. This advantage of outcrossing became apparent only in the competitive situation, in which superior abilities of parasites to extract limiting resources from the host become crucial.

Url:
DOI: 10.1111/j.0014-3820.2002.tb00148.x

Links to Exploration step

ISTEX:1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
<author>
<name sortKey="Christen, Mira" sort="Christen, Mira" uniqKey="Christen M" first="Mira" last="Christen">Mira Christen</name>
<affiliation>
<mods:affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: christen@mpil‐ploen.mpg.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kurtz, Joachim" sort="Kurtz, Joachim" uniqKey="Kurtz J" first="Joachim" last="Kurtz">Joachim Kurtz</name>
<affiliation>
<mods:affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: kurtz@mpil‐ploen.mpg.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Milinski, Manfred" sort="Milinski, Manfred" uniqKey="Milinski M" first="Manfred" last="Milinski">Manfred Milinski</name>
<affiliation>
<mods:affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: milinski@mpil‐ploen.mpg.de</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1111/j.0014-3820.2002.tb00148.x</idno>
<idno type="url">https://api.istex.fr/document/1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001934</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001934</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
<author>
<name sortKey="Christen, Mira" sort="Christen, Mira" uniqKey="Christen M" first="Mira" last="Christen">Mira Christen</name>
<affiliation>
<mods:affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: christen@mpil‐ploen.mpg.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kurtz, Joachim" sort="Kurtz, Joachim" uniqKey="Kurtz J" first="Joachim" last="Kurtz">Joachim Kurtz</name>
<affiliation>
<mods:affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: kurtz@mpil‐ploen.mpg.de</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Milinski, Manfred" sort="Milinski, Manfred" uniqKey="Milinski M" first="Manfred" last="Milinski">Manfred Milinski</name>
<affiliation>
<mods:affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: milinski@mpil‐ploen.mpg.de</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Evolution</title>
<idno type="ISSN">0014-3820</idno>
<idno type="eISSN">1558-5646</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2002-11">2002-11</date>
<biblScope unit="volume">56</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="2243">2243</biblScope>
<biblScope unit="page" to="2251">2251</biblScope>
</imprint>
<idno type="ISSN">0014-3820</idno>
</series>
<idno type="istex">1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E</idno>
<idno type="DOI">10.1111/j.0014-3820.2002.tb00148.x</idno>
<idno type="ArticleID">EVO2243</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0014-3820</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Competition</term>
<term>Schistocephalus solidus</term>
<term>host‐parasite coevolution</term>
<term>inbreeding depression</term>
<term>mixed mating system</term>
<term>selfing</term>
<term>sexual reproduction</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Abstract.— The maintenance of two genetically distinct reproductive modes such as outcrossing and selfing within a population of animals or plants is still a matter of considerable debate. Hermaphroditic parasites often reproduce either alone by selfing or in pairs by outcrossing. They can be used as a model to study potential benefits of outcrossing. Any advantage from outcrossing may be important, especially in host‐parasite coevolution, but has not, to our knowledge, been studied yet in any parasite species. We studied the potential effect of outcrossing in a tapeworm, Schis‐tocephalus solidus, on both infection success and growth in its first intermediate host, the copepod Macrocyclops albidus. Tapeworms that had been obtained from natural populations of three‐spined sticklebacks (Gasterosteus acu‐leatus) were allowed to reproduce either alone or in pairs, in an in vitro system that replaced the final host's gut. This resulted in either selfed or outcrossed offspring, respectively. In one part of the experiment, copepods were exposed to either selfed or outcrossed parasites, in a second part to both types simultaneously, in order to study the effect of competition between them. To discriminate parasites of either origin within the same host, a novel method for fluorescent vital labeling was used. We show here for the first time that outcrossed parasites had a higher infection success and faster development in the host. This advantage of outcrossing became apparent only in the competitive situation, in which superior abilities of parasites to extract limiting resources from the host become crucial.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Mira Christen</name>
<affiliations>
<json:string>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: christen@mpil‐ploen.mpg.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joachim Kurtz</name>
<affiliations>
<json:string>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: kurtz@mpil‐ploen.mpg.de</json:string>
</affiliations>
</json:item>
<json:item>
<name>Manfred Milinski</name>
<affiliations>
<json:string>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: milinski@mpil‐ploen.mpg.de</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Competition</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>host‐parasite coevolution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>inbreeding depression</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mixed mating system</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Schistocephalus solidus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>selfing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>sexual reproduction</value>
</json:item>
</subject>
<articleId>
<json:string>EVO2243</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Abstract.— The maintenance of two genetically distinct reproductive modes such as outcrossing and selfing within a population of animals or plants is still a matter of considerable debate. Hermaphroditic parasites often reproduce either alone by selfing or in pairs by outcrossing. They can be used as a model to study potential benefits of outcrossing. Any advantage from outcrossing may be important, especially in host‐parasite coevolution, but has not, to our knowledge, been studied yet in any parasite species. We studied the potential effect of outcrossing in a tapeworm, Schis‐tocephalus solidus, on both infection success and growth in its first intermediate host, the copepod Macrocyclops albidus. Tapeworms that had been obtained from natural populations of three‐spined sticklebacks (Gasterosteus acu‐leatus) were allowed to reproduce either alone or in pairs, in an in vitro system that replaced the final host's gut. This resulted in either selfed or outcrossed offspring, respectively. In one part of the experiment, copepods were exposed to either selfed or outcrossed parasites, in a second part to both types simultaneously, in order to study the effect of competition between them. To discriminate parasites of either origin within the same host, a novel method for fluorescent vital labeling was used. We show here for the first time that outcrossed parasites had a higher infection success and faster development in the host. This advantage of outcrossing became apparent only in the competitive situation, in which superior abilities of parasites to extract limiting resources from the host become crucial.</abstract>
<qualityIndicators>
<score>7.952</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1628</abstractCharCount>
<pdfWordCount>6282</pdfWordCount>
<pdfCharCount>38355</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>246</abstractWordCount>
</qualityIndicators>
<title>OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>A. F. Agrawal</name>
</json:item>
<json:item>
<name>C. M. Lively</name>
</json:item>
</author>
<host>
<volume>55</volume>
<pages>
<last>879</last>
<first>869</first>
</pages>
<author></author>
<title>Evolution</title>
</host>
<title>Parasites and the evolution of self fertilization</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. W. Allendorf</name>
</json:item>
</author>
<host>
<volume>5</volume>
<pages>
<last>190</last>
<first>181</first>
</pages>
<author></author>
<title>Zoo Biol.</title>
</host>
<title>Genetic drift and the loss of alleles versus heterozygosity</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Arme</name>
</json:item>
<json:item>
<name>R. W. Owen</name>
</json:item>
</author>
<host>
<volume>57</volume>
<pages>
<last>314</last>
<first>301</first>
</pages>
<author></author>
<title>Parasitology</title>
</host>
<title>Infections of the three‐spined stickleback, Gasterosteus aculeatus L., with the plerocercoid larvae of Schistocephalus solidus (Müller, 1776), with special reference to pathological effects</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. H. Barton</name>
</json:item>
<json:item>
<name>B. Charlesworth</name>
</json:item>
</author>
<host>
<volume>281</volume>
<pages>
<last>1990</last>
<first>1986</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>Why sex and recombination</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Bell, G. 1982. The masterpiece of nature: The evolution and genetics of sexuality. Croom‐Helm, London .</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Bijlsma</name>
</json:item>
<json:item>
<name>J. Bundgaard</name>
</json:item>
<json:item>
<name>W. F. Van Putten</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>1137</last>
<first>1125</first>
</pages>
<author></author>
<title>J. Evol. Biol.</title>
</host>
<title>Environmental dependence of inbreeding depression and purging in Dro‐sophila melanogaster</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. P. Brown</name>
</json:item>
<json:item>
<name>F. Renaud</name>
</json:item>
<json:item>
<name>J. F. Guegan</name>
</json:item>
<json:item>
<name>F. Thomas</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>820</last>
<first>815</first>
</pages>
<author></author>
<title>J. Evol. Biol.</title>
</host>
<title>Evolution of trophic transmission in parasites: the need to reach a mating place</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Buchner, A., F. Faul, and E. Erdfelder. 1997. G Power: a priori, post‐hoc, and compromise power analyses for the Macintosh. Ver. 2.1.2. University of Trier, Trier , Germany .</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D. E. Carr</name>
</json:item>
<json:item>
<name>M. R. Dudash</name>
</json:item>
</author>
<host>
<volume>75</volume>
<pages>
<last>445</last>
<first>437</first>
</pages>
<author></author>
<title>Heredity</title>
</host>
<title>Inbreeding depression under a competitive regime in Mimulus guttatus–consequences for potential male and female function</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Charlesworth</name>
</json:item>
</author>
<host>
<volume>84</volume>
<pages>
<last>671</last>
<first>655</first>
</pages>
<author></author>
<title>J. Theor. Biol.</title>
</host>
<title>The cost of sex in relation to mating system</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B. Charlesworth</name>
</json:item>
<json:item>
<name>D. Charlesworth</name>
</json:item>
</author>
<host>
<volume>74</volume>
<pages>
<last>340</last>
<first>329</first>
</pages>
<author></author>
<title>Genet. Res.</title>
</host>
<title>The genetic basis of inbreeding depression</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Charlesworth</name>
</json:item>
<json:item>
<name>B. Charlesworth</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>268</last>
<first>237</first>
</pages>
<author></author>
<title>Annu. Rev. Ecol. Syst.</title>
</host>
<title>Inbreeding depression and its evolutionary consequences</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. Charlesworth</name>
</json:item>
<json:item>
<name>E. E. Lyons</name>
</json:item>
<json:item>
<name>L. B. Litchfield</name>
</json:item>
</author>
<host>
<volume>258</volume>
<pages>
<last>214</last>
<first>209</first>
</pages>
<author></author>
<title>Proc. R. Soc. Lond. B</title>
</host>
<title>Inbreeding depression in two highly inbreeding populations of Leav‐enworthia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. S. Clarke</name>
</json:item>
</author>
<host>
<volume>124</volume>
<pages>
<last>302</last>
<first>257</first>
</pages>
<author></author>
<title>Proc. R. Soc. Lond. B</title>
</host>
<title>Studies on the life cycle of the pseudophyllidean cestode Schistocephalus solidus</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Cohen, J. 1988. Statistical power analysis for the behavioural sciences. Lawrence Erlbaum, Hillsdale , NJ .</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Dubinina, M. N. 1966. Tapeworms (Cestoda, Ligulidae) of the fauna of the USSR. Translated from Russian. Nauka Publishers, Moscow .</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>M. F. Dybdahl</name>
</json:item>
<json:item>
<name>C. M. Lively</name>
</json:item>
</author>
<host>
<volume>52</volume>
<pages>
<last>1066</last>
<first>1057</first>
</pages>
<author></author>
<title>Evolution</title>
</host>
<title>Host‐parasite coevolution: Evidence for rare advantage and time‐lagged selection in a natural population</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. E. Ebert</name>
</json:item>
<json:item>
<name>W. D. Hamilton</name>
</json:item>
</author>
<host>
<volume>11</volume>
<pages>
<last>82</last>
<first>79</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>Sex against virulence: the coevolution of parasitic diseases</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Franz</name>
</json:item>
<json:item>
<name>J. Kurtz</name>
</json:item>
</author>
<host>
<volume>125</volume>
<pages>
<last>196</last>
<first>187</first>
</pages>
<author></author>
<title>Parasitol-ogy</title>
</host>
<title>Altered host behaviour: manipulation or energy depletion in tapeworm‐infected copepods</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. Giles</name>
</json:item>
</author>
<host>
<volume>31</volume>
<pages>
<last>1194</last>
<first>1192</first>
</pages>
<author></author>
<title>Anim. Behav.</title>
</host>
<title>Behavioural effects of the parasite Schistocephalus solidus (Cestoda) on an intermediate host, the three‐spined stickleback, Gasterosteus aculeatus L</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. M. Green</name>
</json:item>
<json:item>
<name>A. R. Kraaijeveld</name>
</json:item>
<json:item>
<name>H. C. J. Godfray</name>
</json:item>
</author>
<host>
<volume>85</volume>
<pages>
<last>458</last>
<first>450</first>
</pages>
<author></author>
<title>Heredity</title>
</host>
<title>Evolutionary interactions between Drosophila melanogaster and its parasitoid Asobara tabida</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. A. Hoffmann</name>
</json:item>
<json:item>
<name>J. Merila</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>101</last>
<first>96</first>
</pages>
<author></author>
<title>Trends Ecol. Evol.</title>
</host>
<title>Heritable variation and evolution under favourable and unfavourable conditions</title>
</json:item>
<json:item>
<author>
<json:item>
<name>K. E. Holsinger</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>7042</last>
<first>7037</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>Reproductive systems and evolution in vascular plants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. A. Hopkins</name>
</json:item>
<json:item>
<name>J. D. Smyth</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>291</last>
<first>283</first>
</pages>
<author></author>
<title>Parasitology</title>
</host>
<title>Notes on the morphology and life history of Schistocephalus solidus (Cestoda, Diphyllo‐bothriidae)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. J. Jakobsen</name>
</json:item>
<json:item>
<name>C. Wedekind</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>418</last>
<first>414</first>
</pages>
<author></author>
<title>Behav. Ecol.</title>
</host>
<title>Copepod reaction to odor stimuli influenced by cestode infection</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. J. Jakobsen</name>
</json:item>
<json:item>
<name>G. H. Johansen</name>
</json:item>
<json:item>
<name>P. Larsson</name>
</json:item>
</author>
<host>
<volume>45</volume>
<pages>
<last>431</last>
<first>426</first>
</pages>
<author></author>
<title>Can. J. Fish. Aquat. Sci.</title>
</host>
<title>Effects of predation risk and parasitism on the feeding ecology, habitat use, and abundance of lacustrine threespine stickleback Gaster‐osteus aculeatus</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Jarne</name>
</json:item>
<json:item>
<name>D. Charlesworth</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>466</last>
<first>441</first>
</pages>
<author></author>
<title>Annu. Rev. Ecol. Syst.</title>
</host>
<title>The evolution of the selfing rate in functionally hermaphrodite plants and animals</title>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Kaltz</name>
</json:item>
<json:item>
<name>J. A. Shykoff</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>349</last>
<first>340</first>
</pages>
<author></author>
<title>J. Evol. Biol.</title>
</host>
<title>Selfing versus outcrossing propensity of the fungal pathogen Microbotryum violaceum across Silene latifolia host plants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. F. Keller</name>
</json:item>
<json:item>
<name>P. Arcese</name>
</json:item>
<json:item>
<name>J. N. M. Smith</name>
</json:item>
<json:item>
<name>W. M. Hochachka</name>
</json:item>
<json:item>
<name>S. C. Stearns</name>
</json:item>
</author>
<host>
<volume>372</volume>
<pages>
<last>357</last>
<first>356</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Selection against inbred song sparrows during a natural population bottleneck</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. S. Kondrashov</name>
</json:item>
</author>
<host>
<volume>336</volume>
<pages>
<last>440</last>
<first>435</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Deleterious mutations and the evolution of sexual reproduction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Kurtz</name>
</json:item>
<json:item>
<name>I. T. van der Veen</name>
</json:item>
<json:item>
<name>M. Christen</name>
</json:item>
</author>
<host>
<volume>100</volume>
<pages>
<last>43</last>
<first>36</first>
</pages>
<author></author>
<title>Exp. Parasitol.</title>
</host>
<title>Fluorescent vital labelling to track cestodes in a copepod intermediate host</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. M. Lively</name>
</json:item>
<json:item>
<name>D. G. Lloyd</name>
</json:item>
</author>
<host>
<volume>135</volume>
<pages>
<last>500</last>
<first>489</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>The cost of biparental sex under individual selection</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. G. Lloyd</name>
</json:item>
</author>
<host>
<volume>113</volume>
<pages>
<last>79</last>
<first>67</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>Some reproductive factors affecting the selection of self‐fertilization in plants</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. Lüscher</name>
</json:item>
<json:item>
<name>C. Wedekind</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>259</last>
<first>254</first>
</pages>
<author></author>
<title>Behav. Ecol.</title>
</host>
<title>Size‐dependent discrimination of mating partners in the simultaneous hermaphroditic cestode Schistocephalus solidus</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Maynard Smith, J. 1971. The origin and maintenance of sex. Aldine Atherton, Chicago , IL .</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Maynard Smith, J. 1978. The evolution of sex. Cambridge Univ. Press, Cambridge , U.K .</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>J. D. McPhail</name>
</json:item>
<json:item>
<name>S. D. Peacock</name>
</json:item>
</author>
<host>
<volume>61</volume>
<pages>
<last>908</last>
<first>901</first>
</pages>
<author></author>
<title>Can. J. Zool.</title>
</host>
<title>Some effects of the cestode Schistocephalus solidus on reproduction in the three‐spined stickleback Gasterosteus aculeatus, evolutionary aspects of a host parasite interaction</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Meagher</name>
</json:item>
<json:item>
<name>D. J. Penn</name>
</json:item>
<json:item>
<name>W. K. Potts</name>
</json:item>
</author>
<host>
<volume>97</volume>
<pages>
<last>3329</last>
<first>3324</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>Male‐male competition magnifies inbreeding depression in wild house mice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. H. Meakins</name>
</json:item>
<json:item>
<name>M. Walkey</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>824</last>
<first>817</first>
</pages>
<author></author>
<title>J. Fish Biol.</title>
</host>
<title>The effects of parasitism by the plerocercoid of Schistocephalus solidus Muller 1776 (Pseudophyllidea) on the respiration of the three‐spined stickleback Gasterosteus aculeatus L</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. K. Michiels</name>
</json:item>
</author>
<host>
<pages>
<last>254</last>
<first>219</first>
</pages>
<author></author>
<title>Sperm competition and sexual selection</title>
</host>
<title>Mating conflicts and sperm competition in simultaneous hermaphrodites</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Milinski</name>
</json:item>
</author>
<host>
<volume>93</volume>
<pages>
<last>215</last>
<first>203</first>
</pages>
<author></author>
<title>Behaviour</title>
</host>
<title>Risk of predation of parasitized sticklebacks (Gasterosteus aculeatus L.) under competition for food</title>
</json:item>
<json:item>
<author>
<json:item>
<name>F. Nakamura</name>
</json:item>
<json:item>
<name>K. Okamoto</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>936</last>
<first>931</first>
</pages>
<author></author>
<title>Int. J. Parasitol.</title>
</host>
<title>Reconsideration of the effects of selfing on the viability of Hymenolepsis nana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T. S. C. Orr</name>
</json:item>
<json:item>
<name>C. A. Hopkins</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>752</last>
<first>741</first>
</pages>
<author></author>
<title>J. Fish. Res. Board Can.</title>
</host>
<title>Maintenance of Schisto‐cephalus solidus in laboratory with observations on rate of growth of and proglottid formation in plerocercoid</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N. J. Ouborg</name>
</json:item>
<json:item>
<name>A. Biere</name>
</json:item>
<json:item>
<name>C. L. Mudde</name>
</json:item>
</author>
<host>
<volume>81</volume>
<pages>
<last>531</last>
<first>520</first>
</pages>
<author></author>
<title>Ecology</title>
</host>
<title>Inbreeding effects on resistance and transmission‐related traits in the Silene mi‐crobotryum pathosystem</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. J. Penn</name>
</json:item>
</author>
<host>
<volume>108</volume>
<pages>
<last>21</last>
<first>1</first>
</pages>
<author></author>
<title>Ethology</title>
</host>
<title>The scent of genetic compatibility: Sexual selection and the major histocompatibility complex</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Schärer</name>
</json:item>
<json:item>
<name>C. Wedekind</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>394</last>
<first>381</first>
</pages>
<author></author>
<title>Evol. Ecol.</title>
</host>
<title>Lifetime reproductive output in a hermaphrodite cestode when reproducing alone or in pairs: a time cost of pairing</title>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Schärer</name>
</json:item>
<json:item>
<name>L. M. Karlsson</name>
</json:item>
<json:item>
<name>M. Christen</name>
</json:item>
<json:item>
<name>C. Wedekind</name>
</json:item>
</author>
<host>
<volume>14</volume>
<pages>
<last>67</last>
<first>55</first>
</pages>
<author></author>
<title>J. Evol. Biol.</title>
</host>
<title>Size dependent sex allocation in a simultaneous hermaphrodite parasite</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Schmitt</name>
</json:item>
<json:item>
<name>D. W. Ehrhardt</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>590</last>
<first>579</first>
</pages>
<author></author>
<title>Evolution</title>
</host>
<title>A test of the sib‐competition hypothesis for outcrossing advantage in Impatiens capensis</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. J. Schrag</name>
</json:item>
<json:item>
<name>A. O. Mooers</name>
</json:item>
<json:item>
<name>G. T. Ndifon</name>
</json:item>
<json:item>
<name>A. F. Read</name>
</json:item>
</author>
<host>
<volume>143</volume>
<pages>
<last>655</last>
<first>636</first>
</pages>
<author></author>
<title>Am. Nat.</title>
</host>
<title>Ecological correlates of male outcrossing ability in a simultaneous hermaphrodite snail</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. D. Smyth</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>70</last>
<first>47</first>
</pages>
<author></author>
<title>J. Exp. Biol.</title>
</host>
<title>Studies on tapeworm physiology. 1. The cultivation of Schistocephalus solidus in vitro</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Smyth, J. D. 1994. Introduction to animal parasitology. Cambridge Univ. Press, Cambridge , U.K .</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>L. Stevens</name>
</json:item>
<json:item>
<name>G. Y. Yan</name>
</json:item>
<json:item>
<name>L. A. Pray</name>
</json:item>
</author>
<host>
<volume>51</volume>
<pages>
<last>2039</last>
<first>2032</first>
</pages>
<author></author>
<title>Evolution</title>
</host>
<title>Consequences of inbreeding on invertebrate host susceptibility to parasitic infection</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Storch, V., and U. Welsch. 1991. Systematische zoologie. Gustav Fischer Verlag, Stuttgart .</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>K. Szafraniec</name>
</json:item>
<json:item>
<name>R. H. Borts</name>
</json:item>
<json:item>
<name>R. Korona</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<last>1112</last>
<first>1107</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. USA</title>
</host>
<title>Environmental stress and mutational load in diploid strains of the yeast Sac‐charomyces cerevisiae</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. I. Watkins</name>
</json:item>
<json:item>
<name>T. L. Garber</name>
</json:item>
<json:item>
<name>Z. W. Chen</name>
</json:item>
<json:item>
<name>G. Toukatly</name>
</json:item>
<json:item>
<name>A. L. Hughes</name>
</json:item>
<json:item>
<name>N. L. Letvin</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>89</last>
<first>79</first>
</pages>
<author></author>
<title>Immunogenetics</title>
</host>
<title>Unusually limited nucleotide‐sequence variation of the expressed major histocompatibility complex class‐I genes of a new‐world primate species (Saguinus oedipus)</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Wedekind</name>
</json:item>
<json:item>
<name>M. Milinski</name>
</json:item>
</author>
<host>
<volume>112</volume>
<pages>
<last>383</last>
<first>371</first>
</pages>
<author></author>
<title>Parasitology</title>
</host>
<title>Do three‐spined sticklebacks avoid consuming copepods, the first intermediate host of Schis‐tocephalus solidus? An experimental analysis of behavioural resistance</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Wedekind</name>
</json:item>
<json:item>
<name>A. Ruetschi</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>1043</last>
<first>1031</first>
</pages>
<author></author>
<title>Evol. Ecol. Res.</title>
</host>
<title>Parasite heterogeneity affects infection success and the occurrence of within‐host competition: An experimental study with a cestode</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Wedekind</name>
</json:item>
<json:item>
<name>D. Strahm</name>
</json:item>
<json:item>
<name>L. Scharer</name>
</json:item>
</author>
<host>
<volume>117</volume>
<pages>
<last>382</last>
<first>373</first>
</pages>
<author></author>
<title>Parasitology</title>
</host>
<title>Evidence for strategic egg production in a hermaphroditic cestode</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Wedekind</name>
</json:item>
<json:item>
<name>M. Christen</name>
</json:item>
<json:item>
<name>L. Scharer</name>
</json:item>
<json:item>
<name>N. Treichel</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>285</last>
<first>279</first>
</pages>
<author></author>
<title>Aquat. Ecol.</title>
</host>
<title>Relative helminth size in crustacean hosts: in vivo determination, and effects of host gender and within‐host competition in a co‐pepod infected by a cestode</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. C. Weeks</name>
</json:item>
<json:item>
<name>V. Marcus</name>
</json:item>
<json:item>
<name>B. R. Crosser</name>
</json:item>
</author>
<host>
<volume>53</volume>
<pages>
<last>483</last>
<first>472</first>
</pages>
<author></author>
<title>Evolution</title>
</host>
<title>Inbreeding depression in a self compatible, androdioecious crustacean, Eu‐limnadia texana</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. A. West</name>
</json:item>
<json:item>
<name>C. M. Lively</name>
</json:item>
<json:item>
<name>A. F. Read</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>1012</last>
<first>1003</first>
</pages>
<author></author>
<title>J. Evol. Biol.</title>
</host>
<title>A pluralist approach to sex and recombination</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. C. Williams</name>
</json:item>
</author>
<host>
<pages>
<last>15</last>
<first>1</first>
</pages>
<author></author>
<title>Group selection</title>
</host>
<title>Introduction</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Williams, G. C. 1975. Sex and evolution. Princeton Univ. Press, Princeton , NJ .</title>
</host>
</json:item>
<json:item>
<host>
<author></author>
<title>Wright, S. 1977. Experimental results and evolutionary deductions. Univ. of Chicago Press, Chicago , IL .</title>
</host>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>56</volume>
<publisherId>
<json:string>EVO</json:string>
</publisherId>
<pages>
<total>9</total>
<last>2251</last>
<first>2243</first>
</pages>
<issn>
<json:string>0014-3820</json:string>
</issn>
<issue>11</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1558-5646</json:string>
</eissn>
<title>Evolution</title>
<doi>
<json:string>10.1111/(ISSN)1558-5646</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>genetics & heredity</json:string>
<json:string>evolutionary biology</json:string>
<json:string>ecology</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>biology</json:string>
<json:string>evolutionary biology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1111/j.0014-3820.2002.tb00148.x</json:string>
</doi>
<id>1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E</id>
<score>0.027675506</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2002</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
<author xml:id="author-1">
<persName>
<forename type="first">Mira</forename>
<surname>Christen</surname>
</persName>
<affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: christen@mpil‐ploen.mpg.de</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Joachim</forename>
<surname>Kurtz</surname>
</persName>
<affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: kurtz@mpil‐ploen.mpg.de</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Manfred</forename>
<surname>Milinski</surname>
</persName>
<affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: milinski@mpil‐ploen.mpg.de</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Evolution</title>
<idno type="pISSN">0014-3820</idno>
<idno type="eISSN">1558-5646</idno>
<idno type="DOI">10.1111/(ISSN)1558-5646</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2002-11"></date>
<biblScope unit="volume">56</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="2243">2243</biblScope>
<biblScope unit="page" to="2251">2251</biblScope>
</imprint>
</monogr>
<idno type="istex">1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E</idno>
<idno type="DOI">10.1111/j.0014-3820.2002.tb00148.x</idno>
<idno type="ArticleID">EVO2243</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2002</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Abstract.— The maintenance of two genetically distinct reproductive modes such as outcrossing and selfing within a population of animals or plants is still a matter of considerable debate. Hermaphroditic parasites often reproduce either alone by selfing or in pairs by outcrossing. They can be used as a model to study potential benefits of outcrossing. Any advantage from outcrossing may be important, especially in host‐parasite coevolution, but has not, to our knowledge, been studied yet in any parasite species. We studied the potential effect of outcrossing in a tapeworm, Schis‐tocephalus solidus, on both infection success and growth in its first intermediate host, the copepod Macrocyclops albidus. Tapeworms that had been obtained from natural populations of three‐spined sticklebacks (Gasterosteus acu‐leatus) were allowed to reproduce either alone or in pairs, in an in vitro system that replaced the final host's gut. This resulted in either selfed or outcrossed offspring, respectively. In one part of the experiment, copepods were exposed to either selfed or outcrossed parasites, in a second part to both types simultaneously, in order to study the effect of competition between them. To discriminate parasites of either origin within the same host, a novel method for fluorescent vital labeling was used. We show here for the first time that outcrossed parasites had a higher infection success and faster development in the host. This advantage of outcrossing became apparent only in the competitive situation, in which superior abilities of parasites to extract limiting resources from the host become crucial.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Competition</term>
</item>
<item>
<term>host‐parasite coevolution</term>
</item>
<item>
<term>inbreeding depression</term>
</item>
<item>
<term>mixed mating system</term>
</item>
<item>
<term>Schistocephalus solidus</term>
</item>
<item>
<term>selfing</term>
</item>
<item>
<term>sexual reproduction</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2002-11">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1558-5646</doi>
<issn type="print">0014-3820</issn>
<issn type="electronic">1558-5646</issn>
<idGroup>
<id type="product" value="EVO"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="EVOLUTION">Evolution</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="11011">
<doi origin="wiley">10.1111/evo.2002.56.issue-11</doi>
<numberingGroup>
<numbering type="journalVolume" number="56">56</numbering>
<numbering type="journalIssue" number="11">11</numbering>
</numberingGroup>
<coverDate startDate="2002-11">November 2002</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0224300" status="forIssue">
<doi origin="wiley">10.1111/j.0014-3820.2002.tb00148.x</doi>
<idGroup>
<id type="unit" value="EVO2243"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<eventGroup>
<event type="firstOnline" date="2007-05-09"></event>
<event type="publishedOnlineFinalForm" date="2007-05-09"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-05"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2243">2243</numbering>
<numbering type="pageLast" number="2251">2251</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:EVO.EVO2243.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted July 30, 2002.</unparsedEditorialHistory>
<countGroup>
<count type="referenceTotal" number="64"></count>
<count type="linksCrossRef" number="3"></count>
</countGroup>
<titleGroup>
<title type="main">OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Mira</givenNames>
<familyName>Christen</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>Joachim</givenNames>
<familyName>Kurtz</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3">
<personName>
<givenNames>Manfred</givenNames>
<familyName>Milinski</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE">
<unparsedAffiliation> Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail:
<email normalForm="christen@mpil-ploen.mpg.de">christen@mpil‐ploen.mpg.de</email>
</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="DE">
<unparsedAffiliation> Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail:
<email normalForm="kurtz@mpil-ploen.mpg.de">kurtz@mpil‐ploen.mpg.de</email>
</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="DE">
<unparsedAffiliation> Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail:
<email normalForm="milinski@mpil-ploen.mpg.de">milinski@mpil‐ploen.mpg.de</email>
</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">Competition</keyword>
<keyword xml:id="k2">host‐parasite coevolution</keyword>
<keyword xml:id="k3">inbreeding depression</keyword>
<keyword xml:id="k4">mixed mating system</keyword>
<keyword xml:id="k5">
<i>Schistocephalus solidus</i>
</keyword>
<keyword xml:id="k6">selfing</keyword>
<keyword xml:id="k7">sexual reproduction</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>Abstract.—</b>
The maintenance of two genetically distinct reproductive modes such as outcrossing and selfing within a population of animals or plants is still a matter of considerable debate. Hermaphroditic parasites often reproduce either alone by selfing or in pairs by outcrossing. They can be used as a model to study potential benefits of outcrossing. Any advantage from outcrossing may be important, especially in host‐parasite coevolution, but has not, to our knowledge, been studied yet in any parasite species. We studied the potential effect of outcrossing in a tapeworm,
<i>Schis‐tocephalus solidus</i>
, on both infection success and growth in its first intermediate host, the copepod
<i>Macrocyclops albidus</i>
. Tapeworms that had been obtained from natural populations of three‐spined sticklebacks (
<i>Gasterosteus acu‐leatus</i>
) were allowed to reproduce either alone or in pairs, in an in vitro system that replaced the final host's gut. This resulted in either selfed or outcrossed offspring, respectively. In one part of the experiment, copepods were exposed to either selfed or outcrossed parasites, in a second part to both types simultaneously, in order to study the effect of competition between them. To discriminate parasites of either origin within the same host, a novel method for fluorescent vital labeling was used. We show here for the first time that outcrossed parasites had a higher infection success and faster development in the host. This advantage of outcrossing became apparent only in the competitive situation, in which superior abilities of parasites to extract limiting resources from the host become crucial.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mira</namePart>
<namePart type="family">Christen</namePart>
<affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: christen@mpil‐ploen.mpg.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Kurtz</namePart>
<affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: kurtz@mpil‐ploen.mpg.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Milinski</namePart>
<affiliation>Department of Evolutionary Ecology, Max‐Planck‐Institute of Limnology, August‐Thienemann‐Strasse 2, 24306 Plön, Germany E‐mail: milinski@mpil‐ploen.mpg.de</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2002-11</dateIssued>
<edition>Accepted July 30, 2002.</edition>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="references">64</extent>
</physicalDescription>
<abstract>Abstract.— The maintenance of two genetically distinct reproductive modes such as outcrossing and selfing within a population of animals or plants is still a matter of considerable debate. Hermaphroditic parasites often reproduce either alone by selfing or in pairs by outcrossing. They can be used as a model to study potential benefits of outcrossing. Any advantage from outcrossing may be important, especially in host‐parasite coevolution, but has not, to our knowledge, been studied yet in any parasite species. We studied the potential effect of outcrossing in a tapeworm, Schis‐tocephalus solidus, on both infection success and growth in its first intermediate host, the copepod Macrocyclops albidus. Tapeworms that had been obtained from natural populations of three‐spined sticklebacks (Gasterosteus acu‐leatus) were allowed to reproduce either alone or in pairs, in an in vitro system that replaced the final host's gut. This resulted in either selfed or outcrossed offspring, respectively. In one part of the experiment, copepods were exposed to either selfed or outcrossed parasites, in a second part to both types simultaneously, in order to study the effect of competition between them. To discriminate parasites of either origin within the same host, a novel method for fluorescent vital labeling was used. We show here for the first time that outcrossed parasites had a higher infection success and faster development in the host. This advantage of outcrossing became apparent only in the competitive situation, in which superior abilities of parasites to extract limiting resources from the host become crucial.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>Competition</topic>
<topic>host‐parasite coevolution</topic>
<topic>inbreeding depression</topic>
<topic>mixed mating system</topic>
<topic>Schistocephalus solidus</topic>
<topic>selfing</topic>
<topic>sexual reproduction</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Evolution</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0014-3820</identifier>
<identifier type="eISSN">1558-5646</identifier>
<identifier type="DOI">10.1111/(ISSN)1558-5646</identifier>
<identifier type="PublisherID">EVO</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>56</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>2243</start>
<end>2251</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E</identifier>
<identifier type="DOI">10.1111/j.0014-3820.2002.tb00148.x</identifier>
<identifier type="ArticleID">EVO2243</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001934 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001934 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1C8F5E2F4DA626E68C61C43A373091F1A55C6D5E
   |texte=   OUTCROSSING INCREASES INFECTION SUCCESS AND COMPETITIVE ABILITY: EXPERIMENTAL EVIDENCE FROM A HERMAPHRODITE PARASITE
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024