Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang

Identifieur interne : 001908 ( Istex/Corpus ); précédent : 001907; suivant : 001909

Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang

Auteurs : Ulrich B Ssler

Source :

RBID : ISTEX:00808F58E503C2C09C9677B24415DDE0BC6D2FD4

Abstract

Abstract: Stretching and releasing the femoral chordotonal organ caused by a movement of the tendon of the organ gives rise to a movement of the tibia. This reaction is called “Kniesehnenreflex” (knee-tendon-reflex). Its step response can be described in the following manner: After a certain reaction-time (at flexion 0.02–0.06 sec, at extension 0.06–0.2 sec) the tibia moves with a maximum speed between 150°/sec and 1000°/sec at extension and between 20°/sec and 450°/sec at flexion. The amplitude of the movement and the maximum speed of tibia movement are correlated. After reaching the extreme position the tibia returnes nearly to its starting-point with half lifes of 3–58 sec after a flexion and 7–232 sec after an extension. — The frequency response shows a strong decrease of the amplitude of the tibia at about 1 Hz. Above 2 Hz the amplitude is only a few degrees. The phase shift between stimulus and reaction increases with increasing frequency. Big individual differences are observed. A step stimulus, which is given in addition to a sinoidal stimulus causes a response at all frequencies. — Slow stretching and releasing the chordotonal organ with constant speeds causes movements of the tibia even at stimulus speeds of 0.002 mm/min. — It is discussed: the significance of the results for the theory of the control mechanism at walk, the stability of the control system in connection with the rocking-movements of the animal and the control of Flexibilitas cerea.

Url:
DOI: 10.1007/BF00267763

Links to Exploration step

ISTEX:00808F58E503C2C09C9677B24415DDE0BC6D2FD4

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="de">Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang</title>
<author>
<name sortKey="B Ssler, Ulrich" sort="B Ssler, Ulrich" uniqKey="B Ssler U" first="Ulrich" last="B Ssler">Ulrich B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier/Kaiserslautern, Deutschland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Chamissostr. 16, D-7000, Stuttgart 1, Deutschland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:00808F58E503C2C09C9677B24415DDE0BC6D2FD4</idno>
<date when="1972" year="1972">1972</date>
<idno type="doi">10.1007/BF00267763</idno>
<idno type="url">https://api.istex.fr/document/00808F58E503C2C09C9677B24415DDE0BC6D2FD4/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001908</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001908</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="de">Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang</title>
<author>
<name sortKey="B Ssler, Ulrich" sort="B Ssler, Ulrich" uniqKey="B Ssler U" first="Ulrich" last="B Ssler">Ulrich B Ssler</name>
<affiliation>
<mods:affiliation>Fachbereich Biologie der Universität Trier/Kaiserslautern, Deutschland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Chamissostr. 16, D-7000, Stuttgart 1, Deutschland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="ISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1972-07-01">1972-07-01</date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="32">32</biblScope>
<biblScope unit="page" to="49">49</biblScope>
</imprint>
<idno type="ISSN">0023-5946</idno>
</series>
<idno type="istex">00808F58E503C2C09C9677B24415DDE0BC6D2FD4</idno>
<idno type="DOI">10.1007/BF00267763</idno>
<idno type="ArticleID">BF00267763</idno>
<idno type="ArticleID">Art5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0023-5946</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="de">de</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Stretching and releasing the femoral chordotonal organ caused by a movement of the tendon of the organ gives rise to a movement of the tibia. This reaction is called “Kniesehnenreflex” (knee-tendon-reflex). Its step response can be described in the following manner: After a certain reaction-time (at flexion 0.02–0.06 sec, at extension 0.06–0.2 sec) the tibia moves with a maximum speed between 150°/sec and 1000°/sec at extension and between 20°/sec and 450°/sec at flexion. The amplitude of the movement and the maximum speed of tibia movement are correlated. After reaching the extreme position the tibia returnes nearly to its starting-point with half lifes of 3–58 sec after a flexion and 7–232 sec after an extension. — The frequency response shows a strong decrease of the amplitude of the tibia at about 1 Hz. Above 2 Hz the amplitude is only a few degrees. The phase shift between stimulus and reaction increases with increasing frequency. Big individual differences are observed. A step stimulus, which is given in addition to a sinoidal stimulus causes a response at all frequencies. — Slow stretching and releasing the chordotonal organ with constant speeds causes movements of the tibia even at stimulus speeds of 0.002 mm/min. — It is discussed: the significance of the results for the theory of the control mechanism at walk, the stability of the control system in connection with the rocking-movements of the animal and the control of Flexibilitas cerea.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<author>
<json:item>
<name>Prof. Dr. Ulrich Bässler</name>
<affiliations>
<json:string>Fachbereich Biologie der Universität Trier/Kaiserslautern, Deutschland</json:string>
<json:string>Chamissostr. 16, D-7000, Stuttgart 1, Deutschland</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF00267763</json:string>
<json:string>Art5</json:string>
</articleId>
<language>
<json:string>ger</json:string>
</language>
<originalGenre>
<json:string>OriginalPaper</json:string>
</originalGenre>
<abstract>Abstract: Stretching and releasing the femoral chordotonal organ caused by a movement of the tendon of the organ gives rise to a movement of the tibia. This reaction is called “Kniesehnenreflex” (knee-tendon-reflex). Its step response can be described in the following manner: After a certain reaction-time (at flexion 0.02–0.06 sec, at extension 0.06–0.2 sec) the tibia moves with a maximum speed between 150°/sec and 1000°/sec at extension and between 20°/sec and 450°/sec at flexion. The amplitude of the movement and the maximum speed of tibia movement are correlated. After reaching the extreme position the tibia returnes nearly to its starting-point with half lifes of 3–58 sec after a flexion and 7–232 sec after an extension. — The frequency response shows a strong decrease of the amplitude of the tibia at about 1 Hz. Above 2 Hz the amplitude is only a few degrees. The phase shift between stimulus and reaction increases with increasing frequency. Big individual differences are observed. A step stimulus, which is given in addition to a sinoidal stimulus causes a response at all frequencies. — Slow stretching and releasing the chordotonal organ with constant speeds causes movements of the tibia even at stimulus speeds of 0.002 mm/min. — It is discussed: the significance of the results for the theory of the control mechanism at walk, the stability of the control system in connection with the rocking-movements of the animal and the control of Flexibilitas cerea.</abstract>
<qualityIndicators>
<score>7.856</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>594 x 810 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1481</abstractCharCount>
<pdfWordCount>9263</pdfWordCount>
<pdfCharCount>62337</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>238</abstractWordCount>
</qualityIndicators>
<title>Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>U B~issler</name>
</json:item>
</author>
<host>
<volume>2</volume>
<pages>
<last>193</last>
<first>168</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1965</publicationDate>
</host>
<title>Proprioreceptoren am Subcoxal-und Femur-Tibia- Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung</title>
<publicationDate>1965</publicationDate>
</json:item>
<json:item>
<author></author>
<host>
<volume>4</volume>
<pages>
<last>26</last>
<first>18</first>
</pages>
<author></author>
<title>Kybernetik</title>
<publicationDate>1967</publicationDate>
</host>
<title>Zur Regelung der Stellung des Femur-Tibia-Gelenkes bei der Stabheuschrecke Carausius morosus in der Ruhe und irn Lauf</title>
<publicationDate>1967</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>J,P Coillot</name>
</json:item>
<json:item>
<name>J Boistel</name>
</json:item>
</author>
<host>
<volume>15</volume>
<pages>
<last>1470</last>
<first>1449</first>
</pages>
<author></author>
<title>J. Insect Physiol</title>
<publicationDate>1969</publicationDate>
</host>
<title>Etude de l'activit6 61ectrique propag6e de recepteurs ~t l'6tirement de la patte m6tathoracique du criquet, Schistocerca 9reoaria</title>
<publicationDate>1969</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>D,M Guthrie</name>
</json:item>
</author>
<host>
<volume>13</volume>
<pages>
<last>1644</last>
<first>1637</first>
</pages>
<author></author>
<title>J. Insect Physiol</title>
<publicationDate>1967</publicationDate>
</host>
<title>Multipolar stretch receptors and the insect leg reflex</title>
<publicationDate>1967</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>E Holst</name>
</json:item>
<json:item>
<name>H Mittelstaedt</name>
</json:item>
</author>
<host>
<volume>37</volume>
<pages>
<last>476</last>
<first>464</first>
</pages>
<author></author>
<title>Naturwissenschaften</title>
<publicationDate>1950</publicationDate>
</host>
<title>Das Reafferenzprinzip</title>
<publicationDate>1950</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>F Steiniger</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>708</last>
<first>591</first>
</pages>
<author></author>
<title>Z. Morph. Okol. Tiere</title>
<publicationDate>1933</publicationDate>
</host>
<title>Die Erscheinungen der Katalepsie bei Stabheuschrecken und Wasserl~iufern</title>
<publicationDate>1933</publicationDate>
</json:item>
<json:item>
<author>
<json:item>
<name>G Wendler</name>
</json:item>
</author>
<host>
<volume>48</volume>
<pages>
<last>250</last>
<first>198</first>
</pages>
<author></author>
<title>Z. vergl. Physiol</title>
<publicationDate>1964</publicationDate>
</host>
<title>Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen</title>
<publicationDate>1964</publicationDate>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>11</volume>
<pages>
<last>49</last>
<first>32</first>
</pages>
<issn>
<json:string>0023-5946</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>Neurosciences</value>
</json:item>
<json:item>
<value>Zoology</value>
</json:item>
</subject>
<journalId>
<json:string>422</json:string>
</journalId>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1432-0770</json:string>
</eissn>
<title>Kybernetik</title>
<publicationDate>1972</publicationDate>
<copyrightDate>1972</copyrightDate>
</host>
<publicationDate>1972</publicationDate>
<copyrightDate>1972</copyrightDate>
<doi>
<json:string>10.1007/BF00267763</json:string>
</doi>
<id>00808F58E503C2C09C9677B24415DDE0BC6D2FD4</id>
<score>0.44234905</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/00808F58E503C2C09C9677B24415DDE0BC6D2FD4/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/00808F58E503C2C09C9677B24415DDE0BC6D2FD4/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/00808F58E503C2C09C9677B24415DDE0BC6D2FD4/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="de">Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<availability>
<p>Springer-Verlag, 1972</p>
</availability>
<date>1972-02-10</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="de">Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang</title>
<author xml:id="author-1">
<persName>
<forename type="first">Ulrich</forename>
<surname>Bässler</surname>
</persName>
<roleName type="degree">Prof. Dr.</roleName>
<affiliation>Fachbereich Biologie der Universität Trier/Kaiserslautern, Deutschland</affiliation>
<affiliation>Chamissostr. 16, D-7000, Stuttgart 1, Deutschland</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Kybernetik</title>
<title level="j" type="abbrev">Kybernetik</title>
<idno type="journal-ID">422</idno>
<idno type="pISSN">0023-5946</idno>
<idno type="eISSN">1432-0770</idno>
<idno type="issue-article-count">7</idno>
<idno type="volume-issue-count">4</idno>
<imprint>
<publisher>Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="1972-07-01"></date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="32">32</biblScope>
<biblScope unit="page" to="49">49</biblScope>
</imprint>
</monogr>
<idno type="istex">00808F58E503C2C09C9677B24415DDE0BC6D2FD4</idno>
<idno type="DOI">10.1007/BF00267763</idno>
<idno type="ArticleID">BF00267763</idno>
<idno type="ArticleID">Art5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1972-02-10</date>
</creation>
<langUsage>
<language ident="de">de</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Stretching and releasing the femoral chordotonal organ caused by a movement of the tendon of the organ gives rise to a movement of the tibia. This reaction is called “Kniesehnenreflex” (knee-tendon-reflex). Its step response can be described in the following manner: After a certain reaction-time (at flexion 0.02–0.06 sec, at extension 0.06–0.2 sec) the tibia moves with a maximum speed between 150°/sec and 1000°/sec at extension and between 20°/sec and 450°/sec at flexion. The amplitude of the movement and the maximum speed of tibia movement are correlated. After reaching the extreme position the tibia returnes nearly to its starting-point with half lifes of 3–58 sec after a flexion and 7–232 sec after an extension. — The frequency response shows a strong decrease of the amplitude of the tibia at about 1 Hz. Above 2 Hz the amplitude is only a few degrees. The phase shift between stimulus and reaction increases with increasing frequency. Big individual differences are observed. A step stimulus, which is given in addition to a sinoidal stimulus causes a response at all frequencies. — Slow stretching and releasing the chordotonal organ with constant speeds causes movements of the tibia even at stimulus speeds of 0.002 mm/min. — It is discussed: the significance of the results for the theory of the control mechanism at walk, the stability of the control system in connection with the rocking-movements of the animal and the control of Flexibilitas cerea.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Biomedicine</head>
<item>
<term>Neurosciences</term>
</item>
<item>
<term>Zoology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1972-02-10">Created</change>
<change when="1972-07-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-11-23">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-21">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/00808F58E503C2C09C9677B24415DDE0BC6D2FD4/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer-Verlag</PublisherName>
<PublisherLocation>Berlin/Heidelberg</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>422</JournalID>
<JournalPrintISSN>0023-5946</JournalPrintISSN>
<JournalElectronicISSN>1432-0770</JournalElectronicISSN>
<JournalTitle>Kybernetik</JournalTitle>
<JournalAbbreviatedTitle>Kybernetik</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Biomedicine</JournalSubject>
<JournalSubject Type="Secondary">Neurosciences</JournalSubject>
<JournalSubject Type="Secondary">Zoology</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>11</VolumeIDStart>
<VolumeIDEnd>11</VolumeIDEnd>
<VolumeIssueCount>4</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>1</IssueIDStart>
<IssueIDEnd>1</IssueIDEnd>
<IssueArticleCount>7</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>1972</Year>
<Month>7</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1972</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art5">
<ArticleInfo Language="De" ArticleType="OriginalPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF00267763</ArticleID>
<ArticleDOI>10.1007/BF00267763</ArticleDOI>
<ArticleSequenceNumber>5</ArticleSequenceNumber>
<ArticleTitle Language="De">Der „Kniesehnenreflex” bei
<Emphasis Type="Italic">Carausius morosus</Emphasis>
: Übergangsfunktion und Frequenzgang</ArticleTitle>
<ArticleFirstPage>32</ArticleFirstPage>
<ArticleLastPage>49</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2004</Year>
<Month>8</Month>
<Day>10</Day>
</RegistrationDate>
<Received>
<Year>1972</Year>
<Month>2</Month>
<Day>10</Day>
</Received>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Springer-Verlag</CopyrightHolderName>
<CopyrightYear>1972</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>422</JournalID>
<VolumeIDStart>11</VolumeIDStart>
<VolumeIDEnd>11</VolumeIDEnd>
<IssueIDStart>1</IssueIDStart>
<IssueIDEnd>1</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1 Aff2">
<AuthorName DisplayOrder="Western">
<Prefix>Prof. Dr.</Prefix>
<GivenName>Ulrich</GivenName>
<FamilyName>Bässler</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgName>Fachbereich Biologie der Universität Trier/Kaiserslautern</OrgName>
<OrgAddress>
<Country>Deutschland</Country>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgAddress>
<Street>Chamissostr. 16</Street>
<Postcode>D-7000</Postcode>
<City>Stuttgart 1</City>
<Country>Deutschland</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>Stretching and releasing the femoral chordotonal organ caused by a movement of the tendon of the organ gives rise to a movement of the tibia. This reaction is called “Kniesehnenreflex” (knee-tendon-reflex). Its step response can be described in the following manner: After a certain reaction-time (at flexion 0.02–0.06 sec, at extension 0.06–0.2 sec) the tibia moves with a maximum speed between 150°/sec and 1000°/sec at extension and between 20°/sec and 450°/sec at flexion. The amplitude of the movement and the maximum speed of tibia movement are correlated. After reaching the extreme position the tibia returnes nearly to its starting-point with half lifes of 3–58 sec after a flexion and 7–232 sec after an extension. — The frequency response shows a strong decrease of the amplitude of the tibia at about 1 Hz. Above 2 Hz the amplitude is only a few degrees. The phase shift between stimulus and reaction increases with increasing frequency. Big individual differences are observed. A step stimulus, which is given in addition to a sinoidal stimulus causes a response at all frequencies. — Slow stretching and releasing the chordotonal organ with constant speeds causes movements of the tibia even at stimulus speeds of 0.002 mm/min. — It is discussed: the significance of the results for the theory of the control mechanism at walk, the stability of the control system in connection with the rocking-movements of the animal and the control of Flexibilitas cerea.</Para>
</Abstract>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="de">
<title>Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="de">
<title>Der „Kniesehnenreflex” bei Carausius morosus: Übergangsfunktion und Frequenzgang</title>
</titleInfo>
<name type="personal">
<namePart type="termsOfAddress">Prof. Dr.</namePart>
<namePart type="given">Ulrich</namePart>
<namePart type="family">Bässler</namePart>
<affiliation>Fachbereich Biologie der Universität Trier/Kaiserslautern, Deutschland</affiliation>
<affiliation>Chamissostr. 16, D-7000, Stuttgart 1, Deutschland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="OriginalPaper"></genre>
<originInfo>
<publisher>Springer-Verlag</publisher>
<place>
<placeTerm type="text">Berlin/Heidelberg</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1972-02-10</dateCreated>
<dateIssued encoding="w3cdtf">1972-07-01</dateIssued>
<copyrightDate encoding="w3cdtf">1972</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">de</languageTerm>
<languageTerm type="code" authority="iso639-2b">ger</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Abstract: Stretching and releasing the femoral chordotonal organ caused by a movement of the tendon of the organ gives rise to a movement of the tibia. This reaction is called “Kniesehnenreflex” (knee-tendon-reflex). Its step response can be described in the following manner: After a certain reaction-time (at flexion 0.02–0.06 sec, at extension 0.06–0.2 sec) the tibia moves with a maximum speed between 150°/sec and 1000°/sec at extension and between 20°/sec and 450°/sec at flexion. The amplitude of the movement and the maximum speed of tibia movement are correlated. After reaching the extreme position the tibia returnes nearly to its starting-point with half lifes of 3–58 sec after a flexion and 7–232 sec after an extension. — The frequency response shows a strong decrease of the amplitude of the tibia at about 1 Hz. Above 2 Hz the amplitude is only a few degrees. The phase shift between stimulus and reaction increases with increasing frequency. Big individual differences are observed. A step stimulus, which is given in addition to a sinoidal stimulus causes a response at all frequencies. — Slow stretching and releasing the chordotonal organ with constant speeds causes movements of the tibia even at stimulus speeds of 0.002 mm/min. — It is discussed: the significance of the results for the theory of the control mechanism at walk, the stability of the control system in connection with the rocking-movements of the animal and the control of Flexibilitas cerea.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Kybernetik</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Kybernetik</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal"></genre>
<originInfo>
<dateIssued encoding="w3cdtf">1972-07-01</dateIssued>
<copyrightDate encoding="w3cdtf">1972</copyrightDate>
</originInfo>
<subject>
<genre>Biomedicine</genre>
<topic>Neurosciences</topic>
<topic>Zoology</topic>
</subject>
<identifier type="ISSN">0023-5946</identifier>
<identifier type="eISSN">1432-0770</identifier>
<identifier type="JournalID">422</identifier>
<identifier type="IssueArticleCount">7</identifier>
<identifier type="VolumeIssueCount">4</identifier>
<part>
<date>1972</date>
<detail type="volume">
<number>11</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>32</start>
<end>49</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer-Verlag, 1972</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">00808F58E503C2C09C9677B24415DDE0BC6D2FD4</identifier>
<identifier type="DOI">10.1007/BF00267763</identifier>
<identifier type="ArticleID">BF00267763</identifier>
<identifier type="ArticleID">Art5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer-Verlag, 1972</accessCondition>
<recordInfo>
<recordContentSource>SPRINGER</recordContentSource>
<recordOrigin>Springer-Verlag, 1972</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001908 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001908 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:00808F58E503C2C09C9677B24415DDE0BC6D2FD4
   |texte=   Der „Kniesehnenreflex” bei Carausius morosus : Übergangsfunktion und Frequenzgang
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024