Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile

Identifieur interne : 001523 ( Istex/Corpus ); précédent : 001522; suivant : 001524

‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile

Auteurs : Johannes Koch ; Rolf Kilian

Source :

RBID : ISTEX:21E52CCC561AF439835226A2F6D3F5882F59EC40

Abstract

Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53°S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872/1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41°S and 55°S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the‘Little Ice Age.’

Url:
DOI: 10.1191/0959683605hl780rp

Links to Exploration step

ISTEX:21E52CCC561AF439835226A2F6D3F5882F59EC40

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</title>
<author wicri:is="90%">
<name sortKey="Koch, Johannes" sort="Koch, Johannes" uniqKey="Koch J" first="Johannes" last="Koch">Johannes Koch</name>
<affiliation>
<mods:affiliation>Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1s6, Canada;</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jkoch@sfu.ca</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Kilian, Rolf" sort="Kilian, Rolf" uniqKey="Kilian R" first="Rolf" last="Kilian">Rolf Kilian</name>
<affiliation>
<mods:affiliation>Lehrstuhl für Geologie, FB VI, Universität Trier, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:21E52CCC561AF439835226A2F6D3F5882F59EC40</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1191/0959683605hl780rp</idno>
<idno type="url">https://api.istex.fr/document/21E52CCC561AF439835226A2F6D3F5882F59EC40/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001523</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001523</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</title>
<author wicri:is="90%">
<name sortKey="Koch, Johannes" sort="Koch, Johannes" uniqKey="Koch J" first="Johannes" last="Koch">Johannes Koch</name>
<affiliation>
<mods:affiliation>Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1s6, Canada;</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jkoch@sfu.ca</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Kilian, Rolf" sort="Kilian, Rolf" uniqKey="Kilian R" first="Rolf" last="Kilian">Rolf Kilian</name>
<affiliation>
<mods:affiliation>Lehrstuhl für Geologie, FB VI, Universität Trier, 54286 Trier, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">The Holocene</title>
<idno type="ISSN">0959-6836</idno>
<idno type="eISSN">1477-0911</idno>
<imprint>
<publisher>Sage Publications</publisher>
<pubPlace>Sage CA: Thousand Oaks, CA</pubPlace>
<date type="published" when="2005-01">2005-01</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="20">20</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
<idno type="ISSN">0959-6836</idno>
</series>
<idno type="istex">21E52CCC561AF439835226A2F6D3F5882F59EC40</idno>
<idno type="DOI">10.1191/0959683605hl780rp</idno>
<idno type="ArticleID">10.1191_0959683605hl780rp</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0959-6836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53°S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872/1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41°S and 55°S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the‘Little Ice Age.’</div>
</front>
</TEI>
<istex>
<corpusName>sage</corpusName>
<author>
<json:item>
<name>Johannes Koch</name>
<affiliations>
<json:string>Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1s6, Canada;</json:string>
<json:string>E-mail: jkoch@sfu.ca</json:string>
</affiliations>
</json:item>
<json:item>
<name>Rolf Kilian</name>
<affiliations>
<json:string>Lehrstuhl für Geologie, FB VI, Universität Trier, 54286 Trier, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>‘Little Ice Age’</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glacier variations</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dendrochronology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>southernmost Andes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>late Holocene</value>
</json:item>
</subject>
<articleId>
<json:string>10.1191_0959683605hl780rp</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53°S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872/1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41°S and 55°S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the‘Little Ice Age.’</abstract>
<qualityIndicators>
<score>6.872</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>600 x 840 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1015</abstractCharCount>
<pdfWordCount>6055</pdfWordCount>
<pdfCharCount>36592</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>156</abstractWordCount>
</qualityIndicators>
<title>‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>M. Aniya</name>
</json:item>
</author>
<host>
<volume>27</volume>
<pages>
<last>322</last>
<first>311</first>
</pages>
<author></author>
<title>Arctic and Alpine Research</title>
</host>
<title>Holocene glacial chronology in Patagonia: Tyndall and Upsala Glacier</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Aniya</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>252</last>
<first>247</first>
</pages>
<author></author>
<title>The Holocene</title>
</host>
<title>Holocene variations of Ameghino Glacier, southern Patagonia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.J. Armesto</name>
</json:item>
<json:item>
<name>I. Casassa</name>
</json:item>
<json:item>
<name>O. Dollenz</name>
</json:item>
</author>
<host>
<volume>98</volume>
<pages>
<last>22</last>
<first>13</first>
</pages>
<author></author>
<title>Vegetatio</title>
</host>
<title>Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. Casassa</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>322</last>
<first>317</first>
</pages>
<author></author>
<title>Annals of Glaciology</title>
</host>
<title>Glacier inventory in Chile: current status and recent glacier variations</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.M. Clapperton</name>
</json:item>
<json:item>
<name>D.E. Sugden</name>
</json:item>
</author>
<host>
<volume>7</volume>
<pages>
<last>198</last>
<first>185</first>
</pages>
<author></author>
<title>Quaternary Science Reviews</title>
</host>
<title>Holocene glacier fluctuations in South America and Antarctica</title>
</json:item>
<json:item>
<host>
<author></author>
<title>Cruise of the‘Alert’</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>O. Dollenz</name>
</json:item>
</author>
<host>
<volume>20</volume>
<pages>
<last>60</last>
<first>50</first>
</pages>
<author></author>
<title>Anales del Insituto de la Patagonia Seria Ciencias Naturales</title>
</host>
<title>Sucesion vegetal en el sistema morrenico del Glaciar Dickson, Magallanes, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>N.F. Glasser</name>
</json:item>
<json:item>
<name>M.J. Hambrey</name>
</json:item>
<json:item>
<name>M. Aniya</name>
</json:item>
</author>
<host>
<volume>12</volume>
<pages>
<last>120</last>
<first>113</first>
</pages>
<author></author>
<title>The Holocene</title>
</host>
<title>An advance of Soler Glacier, North Patagonian Icefield, at c</title>
</json:item>
<json:item>
<host>
<author></author>
<title>The Little Ice Age</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Harrison</name>
</json:item>
<json:item>
<name>V. Winchester</name>
</json:item>
</author>
<host>
<volume>8</volume>
<pages>
<last>485</last>
<first>481</first>
</pages>
<author></author>
<title>The Holocene</title>
</host>
<title>Historical fluctuations of the Gualas and Reicher Glaciers, North Patagonian Icefield, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Harrison</name>
</json:item>
<json:item>
<name>V. Winchester</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>63</last>
<first>55</first>
</pages>
<author></author>
<title>Arctic, Antarctic and Alpine Research</title>
</host>
<title>Nineteenth- and twentieth-century glacier fluctuations and climatic implications in the Arco and Colonia valleys, Hielo Patagónico Norte, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.J. Heusser</name>
</json:item>
</author>
<host>
<volume>50</volume>
<pages>
<last>577</last>
<first>555</first>
</pages>
<author></author>
<title>Geographical Review</title>
</host>
<title>Late-Pleistocene environments of the Laguna de San Rafael area, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.J. Heusser</name>
</json:item>
<json:item>
<name>L.M. Cranwell</name>
</json:item>
</author>
<host>
<pages>
<last>115</last>
<first>95</first>
</pages>
<author></author>
<title>Ancient Pacificflora; the pollen story</title>
</host>
<title>Some pollen profiles from Laguna de San Rafael area, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.L. Holmes</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>75</last>
<first>69</first>
</pages>
<author></author>
<title>Tree-Ring Bulletin</title>
</host>
<title>Computer-assisted quality control in tree-ring dating and measurement</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. Holmlund</name>
</json:item>
<json:item>
<name>H. Fuenzalida</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>473</last>
<first>465</first>
</pages>
<author></author>
<title>Journal of Glaciology</title>
</host>
<title>Anomalous glacier responses to 20th century climatic changes in Darwin Cordillera, southern Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. Holzhauser</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>185</last>
<first>168</first>
</pages>
<author></author>
<title>Geographica Helvetica</title>
</host>
<title>Neue Ergebnisse zur Gletscher- und Klimageschichte des Spältmittelalters und der Neuzeit</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.L. Kuylenstierna</name>
</json:item>
<json:item>
<name>G.C. Rosqvist</name>
</json:item>
<json:item>
<name>P. Holmlund</name>
</json:item>
</author>
<host>
<volume>6</volume>
<pages>
<last>358</last>
<first>353</first>
</pages>
<author></author>
<title>The Holocene</title>
</host>
<title>Late-Holocene glacier variations in the Cordillera Darwin, Tierra del Fuego, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.B. Lawrence</name>
</json:item>
<json:item>
<name>E.G. Lawrence</name>
</json:item>
</author>
<host>
<volume>641</volume>
<pages>
<last>39</last>
<first>39</first>
</pages>
<issue>04</issue>
<author></author>
<title>American Geographic Society, Technical Report</title>
</host>
<title>Recent glacier variations in southern South America</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.H. Luckman</name>
</json:item>
</author>
<host>
<volume>32</volume>
<pages>
<last>384</last>
<first>357</first>
</pages>
<author></author>
<title>Geomorphology</title>
</host>
<title>The Little Ice Age in the Canadian Rockies</title>
</json:item>
<json:item>
<author>
<json:item>
<name>B.H. Luckman</name>
</json:item>
<json:item>
<name>R. Villalba</name>
</json:item>
<json:item>
<name>V. Markgraf</name>
</json:item>
</author>
<host>
<pages>
<last>140</last>
<first>119</first>
</pages>
<author></author>
<title>Interhemispheric climate linkages</title>
</host>
<title>Assessing the synchroneity of glacier fluctuations in the western Cordillera of the Americas during the last millennium</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.J. Marden</name>
</json:item>
<json:item>
<name>C.M. Clapperton</name>
</json:item>
</author>
<host>
<volume>10</volume>
<pages>
<last>210</last>
<first>197</first>
</pages>
<author></author>
<title>Journal of Quaternary Science</title>
</host>
<title>Fluctuations of the South Patagonian Ice-field during the last glaciation and the Holocene</title>
</json:item>
<json:item>
<host>
<author></author>
<title>The ecology of recently-deglaciated terrain. A geoecological approach to glacier forelands and primary succession</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>D.P. McCarthy</name>
</json:item>
<json:item>
<name>B.H. Luckman</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>68</last>
<first>63</first>
</pages>
<author></author>
<title>Arctic and Alpine Research</title>
</host>
<title>Estimating ecesis for tree-ring dating of moraines: a comparative study from the Canadian Cordillera</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D.P. McCarthy</name>
</json:item>
<json:item>
<name>B.H. Luckman</name>
</json:item>
<json:item>
<name>P.E. Kelly</name>
</json:item>
</author>
<host>
<volume>23</volume>
<pages>
<last>455</last>
<first>451</first>
</pages>
<author></author>
<title>Arctic and Alpine Research</title>
</host>
<title>Sampling height-age error correction for spruce seedlings in glacial forefield, Canadian Cordillera</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.H. Mercer</name>
</json:item>
</author>
<host>
<volume>266</volume>
<pages>
<last>109</last>
<first>91</first>
</pages>
<author></author>
<title>American Journal of Science</title>
</host>
<title>Variations of some Patagonian glaciers since the Late-Glacial</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.H. Mercer</name>
</json:item>
</author>
<host>
<volume>269</volume>
<pages>
<last>25</last>
<first>1</first>
</pages>
<author></author>
<title>American Journal of Science</title>
</host>
<title>Variations of some Patagonian glaciers since the Late-Glacial: II</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J.H. Mercer</name>
</json:item>
</author>
<host>
<volume>18</volume>
<pages>
<last>40</last>
<first>35</first>
</pages>
<author></author>
<title>Striae</title>
</host>
<title>Holocene glacier variations in southern South America</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.L. Nichols</name>
</json:item>
<json:item>
<name>M.M. Miller</name>
</json:item>
</author>
<host>
<volume>41</volume>
<pages>
<last>294</last>
<first>274</first>
</pages>
<author></author>
<title>Geographical Review</title>
</host>
<title>Glacial geology of Ameghino Valley, Lago Argentino, Patagonia</title>
</json:item>
<json:item>
<author>
<json:item>
<name>E. Pisano</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>128</last>
<first>107</first>
</pages>
<author></author>
<title>Anales del Insituto de la Patagonia</title>
</host>
<title>Establecimiento de Nothofagus betuloides (Mirb.) Blume (Coigue de Magallanes) en un valle en proceso de desglaciacion</title>
</json:item>
<json:item>
<host>
<author></author>
<title>10 000 Jahre Gletschergeschichte der Erde</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Schneider</name>
</json:item>
<json:item>
<name>M. Glaser</name>
</json:item>
<json:item>
<name>R. Kilian</name>
</json:item>
<json:item>
<name>A. Santana</name>
</json:item>
<json:item>
<name>N. Butorovic</name>
</json:item>
<json:item>
<name>G. Casassa</name>
</json:item>
</author>
<host>
<volume>24</volume>
<pages>
<last>119</last>
<first>97</first>
</pages>
<author></author>
<title>Physical Geography</title>
</host>
<title>Weather observations across the southern Andes at 53°S</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R.S. Sigafoos</name>
</json:item>
<json:item>
<name>E.L. Hendricks</name>
</json:item>
</author>
<host>
<volume>650-B</volume>
<pages>
<last>93</last>
<first>89</first>
</pages>
<author></author>
<title>US Geological Survey Professional Paper</title>
</host>
<title>The time interval between stabilization of alpine glacial deposits and establishment of tree seedlings</title>
</json:item>
<json:item>
<host>
<author></author>
<title>An introduction to tree-ring dating</title>
</host>
</json:item>
<json:item>
<author>
<json:item>
<name>T. Sweda</name>
</json:item>
</author>
<host>
<volume>4</volume>
<pages>
<last>124</last>
<first>119</first>
</pages>
<author></author>
<title>Bulletin of Glacier Research</title>
</host>
<title>Recent retreat of Soler Glacier, Patagonia, as seen from vegetation recovery</title>
</json:item>
<json:item>
<author>
<json:item>
<name>T.T. Veblen</name>
</json:item>
<json:item>
<name>D.H. Ashton</name>
</json:item>
<json:item>
<name>S. Rubulis</name>
</json:item>
<json:item>
<name>D.C. Lorenz</name>
</json:item>
<json:item>
<name>M. Cortes</name>
</json:item>
</author>
<host>
<volume>21</volume>
<pages>
<last>155</last>
<first>144</first>
</pages>
<author></author>
<title>Arctic and Alpine Research</title>
</host>
<title>Nothofagus stand development on in-transit moraines, Casa Pangua Glacier, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Villalba</name>
</json:item>
</author>
<host>
<volume>26</volume>
<pages>
<last>197</last>
<first>183</first>
</pages>
<author></author>
<title>Climatic Change</title>
</host>
<title>Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. Villalba</name>
</json:item>
<json:item>
<name>J.C. Leiva</name>
</json:item>
<json:item>
<name>S. Rubulis</name>
</json:item>
<json:item>
<name>J. Suarez</name>
</json:item>
<json:item>
<name>L. Lenzano</name>
</json:item>
</author>
<host>
<volume>22</volume>
<pages>
<last>232</last>
<first>215</first>
</pages>
<author></author>
<title>Arctic and Alpine Research</title>
</host>
<title>Climate, tree-ring, and glacial fluctuations in the Rio Frias valley, Rio Negro, Argentina</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.R. Warren</name>
</json:item>
</author>
<host>
<volume>75A</volume>
<pages>
<last>125</last>
<first>111</first>
</pages>
<author></author>
<title>Geografiska Annaler</title>
</host>
<title>Rapid recent fluctuations of the calving San Rafael Glacier, Chilean Patagonia: climatic or non-climatic</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C.R. Warren</name>
</json:item>
<json:item>
<name>D.E. Sugden</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>331</last>
<first>316</first>
</pages>
<author></author>
<title>Arctic and Alpine Research</title>
</host>
<title>The Patagonian icefields: a glaciological review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G.C. Wiles</name>
</json:item>
<json:item>
<name>D.J. Barclay</name>
</json:item>
<json:item>
<name>P.E. Calkin</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>173</last>
<first>163</first>
</pages>
<author></author>
<title>The Holocene</title>
</host>
<title>Tree-ring dated‘Little Ice Age’ histories of maritime glaciers from western Prince William Sound, Alaska</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Winchester</name>
</json:item>
<json:item>
<name>S. Harrison</name>
</json:item>
</author>
<host>
<volume>78A</volume>
<pages>
<last>49</last>
<first>35</first>
</pages>
<author></author>
<title>Geografiska Annaler</title>
</host>
<title>Recent oscillations of the San Quintin and San Rafael Glaciers, Patagonian Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Winchester</name>
</json:item>
<json:item>
<name>S. Harrison</name>
</json:item>
</author>
<host>
<volume>34</volume>
<pages>
<last>194</last>
<first>181</first>
</pages>
<author></author>
<title>Geomorphology</title>
</host>
<title>Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonian Icefield, Chile</title>
</json:item>
<json:item>
<author>
<json:item>
<name>V. Winchester</name>
</json:item>
<json:item>
<name>S. Harrison</name>
</json:item>
<json:item>
<name>C.R. Warren</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>273</last>
<first>266</first>
</pages>
<author></author>
<title>Arctic, Antarctic and Alpine Research</title>
</host>
<title>Recent retreat Glacier Nef, Chilean Patagonia, dated by lichenometry and dendrochronology</title>
</json:item>
</refBibs>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>15</volume>
<publisherId>
<json:string>HOL</json:string>
</publisherId>
<pages>
<last>28</last>
<first>20</first>
</pages>
<issn>
<json:string>0959-6836</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1477-0911</json:string>
</eissn>
<title>The Holocene</title>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>geosciences, multidisciplinary</json:string>
<json:string>geography, physical</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>paleontology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1191/0959683605hl780rp</json:string>
</doi>
<id>21E52CCC561AF439835226A2F6D3F5882F59EC40</id>
<score>0.5517094</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/21E52CCC561AF439835226A2F6D3F5882F59EC40/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/21E52CCC561AF439835226A2F6D3F5882F59EC40/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/21E52CCC561AF439835226A2F6D3F5882F59EC40/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Sage Publications</publisher>
<pubPlace>Sage CA: Thousand Oaks, CA</pubPlace>
<availability>
<p>SAGE</p>
</availability>
<date>2005</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</title>
<author xml:id="author-1">
<persName>
<forename type="first">Johannes</forename>
<surname>Koch</surname>
</persName>
<email>jkoch@sfu.ca</email>
<affiliation>Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1s6, Canada;</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Rolf</forename>
<surname>Kilian</surname>
</persName>
<affiliation>Lehrstuhl für Geologie, FB VI, Universität Trier, 54286 Trier, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">The Holocene</title>
<idno type="pISSN">0959-6836</idno>
<idno type="eISSN">1477-0911</idno>
<imprint>
<publisher>Sage Publications</publisher>
<pubPlace>Sage CA: Thousand Oaks, CA</pubPlace>
<date type="published" when="2005-01"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="20">20</biblScope>
<biblScope unit="page" to="28">28</biblScope>
</imprint>
</monogr>
<idno type="istex">21E52CCC561AF439835226A2F6D3F5882F59EC40</idno>
<idno type="DOI">10.1191/0959683605hl780rp</idno>
<idno type="ArticleID">10.1191_0959683605hl780rp</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2005</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53°S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872/1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41°S and 55°S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the‘Little Ice Age.’</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>‘Little Ice Age’</term>
</item>
<item>
<term>glacier variations</term>
</item>
<item>
<term>dendrochronology</term>
</item>
<item>
<term>southernmost Andes</term>
</item>
<item>
<term>late Holocene</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2005-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/21E52CCC561AF439835226A2F6D3F5882F59EC40/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus sage not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article" dtd-version="2.3" xml:lang="EN">
<front>
<journal-meta>
<journal-id journal-id-type="hwp">sphol</journal-id>
<journal-id journal-id-type="publisher-id">HOL</journal-id>
<journal-title>The Holocene</journal-title>
<issn pub-type="ppub">0959-6836</issn>
<publisher>
<publisher-name>Sage Publications</publisher-name>
<publisher-loc>Sage CA: Thousand Oaks, CA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1191/0959683605hl780rp</article-id>
<article-id pub-id-type="publisher-id">10.1191_0959683605hl780rp</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Koch</surname>
<given-names>Johannes</given-names>
</name>
<aff>Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1s6, Canada;
<email xlink:type="simple">jkoch@sfu.ca</email>
</aff>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="author" xlink:type="simple">
<name name-style="western">
<surname>Kilian</surname>
<given-names>Rolf</given-names>
</name>
<aff>Lehrstuhl für Geologie, FB VI, Universität Trier, 54286 Trier, Germany</aff>
</contrib>
</contrib-group>
<pub-date pub-type="ppub">
<month>01</month>
<year>2005</year>
</pub-date>
<volume>15</volume>
<issue>1</issue>
<fpage>20</fpage>
<lpage>28</lpage>
<abstract>
<p>Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53°S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872/1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41°S and 55°S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the‘Little Ice Age.’</p>
</abstract>
<kwd-group>
<kwd>‘Little Ice Age’</kwd>
<kwd>glacier variations</kwd>
<kwd>dendrochronology</kwd>
<kwd>southernmost Andes</kwd>
<kwd>late Holocene</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta xlink:type="simple">
<meta-name>sagemeta-type</meta-name>
<meta-value>Journal Article</meta-value>
</custom-meta>
<custom-meta xlink:type="simple">
<meta-name>search-text</meta-name>
<meta-value> The Holocene 15,1 (2005) pp. 20-28 'Little Ice Age' glacier fluctuations, Gran Campo Nevado, southernmost Chile Johannes Kochl* and Rolf Kilian2 (1Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada,2Lehrstuhlfar Geologie, FB VI, Universitat Trier, 54286 Trier, Germany) Received 8 May 2003; revised manuscript accepted 1 January 2004 A HOLOCENE RESEARCH PAPER Abstract: Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53°S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872/1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41°S and 55°S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the 'Little Ice Age.' Key words: 'Little Ice Age', glacier variations, dendrochronology, southernmost Andes, late Holocene. Introduction The 'Little Ice Age', a period during the last millennium in which glacier cover was generally more extensive (Grove, 1988), is a phenomenon recorded in all mountainous areas of the world (e.g., Luckman, 2000; Holzhauser, 1985; Wiles et al., 1999; Villalba, 1994). These glacier fluctuations seem to be synchronous on a centennial scale along the pole- equator-pole I transect (along the Americas). However, long stretches along the Cordillera remain uninvestigated. There- fore, Luckman and Villalba (2001: 136) pointed out that 'there remains a significant need for detailed, well-dated records of ['Little Ice Age'] glacier fluctuations'. Gran Campo Nevado is a small ice cap (approximately 200 kmi2) in the southernmost Andes (53°S; Figure 1). It is located between the Hielo Patagonico Sur (48020' to 51°30'S) and the Cordillera Darwin (54-55°S), both of which have been the focus of glaciological studies (e.g., Warren and Sugden, 1993; Casassa, 1995; Holmlund and Fuenzalida, 1995). However, due to relatively difficult access only a few studies on Holocene glacier activity have been carried out (e.g., Mercer, 1968; 1970; 1982; Clapperton and Sugden, 1988; Aniya, 1995; 1996; Kuylenstiema et al., 1996). As recent varia- tions of Patagonian glaciers are highly localized, probably due *Author for correspondence: (e-mail: jkoch@sfu.ca) () 2005 Edward Amold (Publishers) Ltd to topographic-climatic effects and glacier dynamics (Warren and Sugden, 1993; Holmlund and Fuenzalida, 1995), further studies are needed to establish a complete picture of the Holocene glacial chronology in Patagonia. In all previous studies, glacial advances were dated to the 'Little Ice Age' (LIA). However, studies concerning specifically the LIA are very few (Villalba et al., 1990; Harrison and Winchester, 1998; 2000; Winchester and Harrison, 2000; Winchester et al., 2001; Strelin and Casassa, unpublished data) and therefore more detailed LIA chronologies would be welcome (Luckman and Villalba, 2001). Study area The investigated Andean area at 53°S is characterized by deeply incised fiords and islands with their highest elevations around 2000 m (Figure 1). The north-south trending Andes form an orographic barrier to the very strong and prevailing westerlies, leading to annual precipitation in excess of 6000 mm (Schneider et al., 2003). Precipitation is evenly distributed throughout the year and the area is characterized by cool summers and mild winters. Glaciar Lengua, as well as approximately 25 other unnamed outlet glaciers of Gran Campo Nevado, has not been subject to any study known to the authors. Glaciar Lengua is located west of Bahia Bahamondes on Canal Gajardo, a fiord connect- 10.1 191/0959683605hl780rp . Johanes Koch and Rolf Kilian: 'little Ice Age' glacier fluctuations, Gran Campo Nevado, Chile 21 I~~~~~- .... S..., ____E! _= I; I 1 4~~~~710' 73* Figure 1 Location of Glaciar Lengua. The small map in the top right shows the location of the study site with the Hielo Patag6nico Sur to the north, and Cordillera Darwin in the south. The main map shows the location of Gran Campo Nevado in relation to Estrecho de Magallanes and Seno Skyring and the map of Gran Campo Nevado ice cap (lower right) includes the names mentioned in the text. ing Seno Skyring in the northeast with the Estrecho de Magal- lanes to the southwest (Figure 1). The valley between the gla- cier front and Bahia Bahamondes is mainly occupied by a bar of Holocene sediments. The well-drained parts of the bar are forested by Magellanic Rainforest, with the remaining area covered by Magellanic Moorland. Forests are dominated by Nothofagus betuloides (Mirb.) Blume with Nothofagus antarc- tica (Forst) Oerst, Pilgerodendron uviferum (D. Don) Florin and Drimys winteri J.R. & G. Forst being minor components. The moraine systems in the glacier foreland of Glaciar Lengua were mapped during the austral summer of 2000. The outermost moraine lies approximately 900 m in front of the present glacier snout. The geomorphic and vegetational evidence show four distinct moraine complexes lying within 300 m of each other (moraines B-E; Figure 2). A fifth moraine system (moraine A) was found only on the north side of Rio Lengua. The moraine systems dam Lago Lengua, a small lake drained by Rio Lengua. Rio Lengua has breached all the moraine systems and its course has changed since the last glacier advance. Each moraine complex is better defined north of Rio Lengua, whereas the south side has been modified by fluvial activity. All moraine systems comprise complex multiple moraines and push moraines; for example, moraine C has four distinct ridges within the main moraine complex (Figure 3). It is therefore assumed that during the general recession of Glaciar Lengua there were various standstills and minor readvances. All moraine systems are extensively covered by dense forest (Figure 4). However, each system shows a different succession stage (Figure 3), ranging from pioneer Nothofagus antarctica forest on the innermost moraines (moraine E) to primary Magellanic Rainforest dominated by Nothofagus betuloides on moraine A, with forest on moraine B appearing to be slightly younger, lacking the fallen trunks and stumps of moraine A. The forest cover on intervening moraine systems (moraines C and D) represents intermediate succession stages with Nothofagus antarctica and N. betuloides codominating. Methods The formation of the moraines was dated by dendrochronolo- gical means. The age of the oldest tree on a moraine provides a minimum estimate for moraine formation and stabilization (Sigafoos and Hendricks, 1969; McCarthy and Luckman, 1993). On the foreland, tree invasion appears to be uniform and at an early stage in succession. One problem is that, due to the very dense forest cover on all moraines, it is possible that the oldest trees were not always sampled and dated. Two increment cores were extracted from several trees on each mor- aine using a 4.3 mm diameter increment borer. By removing two cores, data are replicated and the possibility of missing rings or 'false' rings is reduced (Stokes and Smiley, 1968). Cores were mounted and prepared for analysis by sanding with progressively finer grades of sandpaper to enhance the defi- nition and contrast of annual tree-ring boundaries. Rings were measured with a precision of ± 0.01 mm. Trees damaged or tilted by a glacier advance provide additional age controls on moraines and trees killed by a glacier advance can be used to develop floating chronologies that can be crossdated with living chronologies, with the year of death providing a minimum age for the moraine. Discs were cut from any damaged or killed trees found on the moraines and analysed 22 The Holocene 15 (2005) LI 52'80' 72b98' Figure 2 Geomorphic map of Glaciar Lengua and its surroundings Shown are the mapped and dated moraine systems A-E with the transect across the moraines in white (Figure 3). The insert map shows the mapped moraines A-E and the location of sampling sites numbered 1-9. The bold lines indicate the major moraines, while the lighter lines indicate minor moraines formed by standstills and/or readvances. Contour intervals are 100m Figure 3 Cross-section of the moraine systems of Glaciar Lengua. The sketch is approximately to scale with a slight vertical exaggeration. The length of the transect is approximately 300 m and the height of the biggest moraine is approximately 25 m.The location of the transect is shown in Figure 2. The different succession stages are indicated by different heights of vegetation cover. in the same way as the cores. However, four radii were measured on the discs to improve the certainty of the crossdating. A living tree-ring chronology was formed from all trees growing on the various moraines. The series was checked and verified by the International Tree-Ring Data Bank (ITRDB) software program COFECHA and crossdated (50-year dated segments lagged by 25 years, with a critical level of correlation [99%] set at 0.32), thus creating a master ring- width chronology (Holmes, 1983). A floating chronology was developed from a killed tree including the bark. The floating series was crossdated against the living chronology using COFECHA (50-year dated segments lagged by 25 years, with a critical level of correlation [99%] set at 0.32) to determine the year of death. When trees are used to date a moraine, a more accurate estimate of the surface age is obtained by adding the ecesis interval (time from surface stabilization to seedling germination) to the age of the oldest tree (Sigafoos and Hendricks, 1969; McCarthy and Luckman, 1993; Matthews, 1992). Ecesis in this study was estimated by two independent methods. The first approach to determine ecesis was by air-photo examin- ation. The second was by taking the time difference between kill and/or tilt dates by glacier advances and the date of ger- mination of the oldest trees on the same moraine. Further- more, the time trees need to grow to sampling height must be corrected for (McCarthy et al., 1991; Winchester and Harrison, 2000). We used the method proposed by Winchester and Harrison (2000). To establish age/growth relationships below coring heights, 15 small trees were cut at ground level. Each tree's local environment, its height and basal ring count were recorded. Furthermore, where applicable, trees with sections suggesting stressful growth conditions (e.g., narrow rings or compression wood) were recorded. Ages of trees below core height were then based on the characteristics of the rings nearest the central pith and the recorded details for each tree. With trees showing multiple stress factors, a maximum number of years were added to the ring count to establish a germination date. If trees were unstressed and there were wide rings at the pith end of a core, rapid growth to core height was assumed and a minimum number of years was added. Results Dendrochronology A living tree-ring chronology of all sampled trees was built which spans the time period from AD 1646 to 2000. From AD 1663 the chronology comprises at least 10 trees (16 cores). Interseries correlation according to the ITRDB COFECHA Johannes Koch and Rolf Kilian: 'little Ice Age' glacier fluctuations, Gran Campo Nevado, Chile 23 Figure 4 Oblique view of Glaciar Lengua from the north. The plateau-like main body of the glacier can be observed below the icefall feeding the glacier from the ice cap. To the left of the glacier tongue is Lago Lengua, dammed by the heavily forested 'Little Ice Age' moraines. program is significant at 0.497. A floating chronology (four radii) of a tree killed by a boulder on moraine C was crossdated with the living chronology using COFECHA. The highest correlation with the living chronology was achieved for AD 1795-1875 with the correlation significant at 0.59. This indicates that the tree was killed in AD 1875. Tree age below core height Table 1 shows variations in growth rates and tree height. The data show that average annual growth rates for young Nothofagus spp. vary from 7.1 to 25 cm/year. Therefore these trees can take 2-7 years to grow to the coring height of 50 cm. However, it was found afterwards that highly stressed trees had not been sampled. This was probably because these trees are almost impossible to core, as they almost always develop multiple branches in the lower reaches of the trunk. Therefore, it is assumed that the sampled trees took less than five years to grow to the coring height of 50 cm. Table I Tree height estimates at Gran Campo Nevado. Varying age- height relationships and average growth rates of Nothofagus species (N. betuloides and N. antarctica), based on ring counts from trees cut at ground level. Average growth rates are included to show growth range Ring count (age) Tree height (cm) Growth rate (cm/year) 2 34, 45, 50 17, 22.5, 25 3 23, 44 7.6, 14.7 4 49, 55, 75, 87 12.3, 13.8, 18.8, 21.8 7 50, 98, 157 7.1, 14, 22.4 11 134, 156 12.2, 14.2 15 115, 187 7.7, 12.5 IC_. Ecesis Aerial photographs from 1942, 1984 and 1998 were obtained from SAF (Fuerza aerea de Chile, Servicio Aereofotograme- trico). On the picture taken in 1942 Glaciar Lengua had already receded into the lake with the tongue close to the shore and the innermost moraine. In 2000, trees sampled on moraine E showed a maximum age of 40 years. Therefore ecesis is a maximum of 18 years + an unknown time interval, as it is unknown if the glacier readvanced to form moraine E after 1942 or when the glacier receded from moraine E to the position of 1942. Aerial photographs of neighbouring Glaciar de la Galeria (unofficial name; Figure 1) show the recession at a part of the lateral moraine. Between 1942 and 1984 recession was very small and moraines of this time are close to each other. Trees growing in an area still under ice in 1942, but ice-free in 1984, were sampled in 2000 and show maximum ages of around 11 years. Therefore ecesis is a maximum of 47 years and a mini- mum of five years. If glacier recession between the formation of the two moraines is assumed to be constant, an ecesis interval of 15-20 years seems to be reasonable. A tree on moraine C, north of Rio Lengua, was killed by a boulder in AD 1875 (site 8 in Figure 2 inset). The oldest age obtained from trees established after glacier recession germi- nated at around AD 1884. Therefore, ecesis took at least nine years at this site. As the date between glacier advance and tree death could be some years apart this is still a minimum esti- mate. A tree on moraine C, south of Rio Lengua, was tilted by a glacier advance in AD 1872 (site 5 in Figure 2 inset). The oldest age obtained from trees established after glacier recession started growth around AD 1894. Therefore, ecesis took at most 22 years at this site. Here the date of the glacier advance is known, but not when the glacier started receding. Again the tilting date could be some years apart from the start of recession and therefore it is a maximum estimate. The tilting and killing of trees in the 1870s occurred on the same moraine 24 The Holocene 15(2005) and therefore another picture could be drawn. Glaciar Lengua advanced to the position of moraine C and tilted a tree in AD 1872. Three years later a tree was killed by a boulder rolling off the moraine during stabilization. The oldest tree on moraine C germinated in AD 1884 and thus ecesis took between nine and 12 years. However, it cannot be taken for granted that Glaciar Lengua receded from all of moraine C at the same time and thus a more conservative estimate of nine to 22 years is assumed. Taking all the above results into account, ecesis at Glaciar Lengua at Gran Campo Nevado takes 9-22 years, with the most likely estimate at around 15 years. Glacial chronology Ten to fifteen trees were sampled on each moraine complex to determine a minimum age for each advance (Figure 2; Table 2). However, about 30% of all samples could not be analysed due to little contrast or tree rings being less than 0.01 mm apart and thus below the resolution of the measuring device. On moraine C a tree tilted by the moraine deposition was found and sampled to establish a calendar date for this advance. On the same moraine system north of Rio Lengua a tree was killed by a big boulder (240 mi3) rolling off the moraine crest. It is assumed that this occurred shortly after moraine depo- sition while the surface was stabilizing. Therefore this moraine system can be precisely dated without taking any ecesis inter- val into account. Also, these dates enable a better estimate for ecesis (see above). Our investigations at Glaciar Lengua show that glacier cover was more extensive during the 'Little Ice Age' than it is today (Figure 2). In 2000, trees sampled on moraine E yielded a maximum tree age of 41 years. Tree ages are 70 years for moraine D2, 80 years for moraine DI, 96 years for moraine C2, 116 years for moraine Cl and 354 years for moraine B. Core ring counts, with the addition of 15 years for ecesis and three years for growth to core height, date the formation of moraines B-E (Figure 2 inset) to the years C. AD 1628 (B), 1872/75 (Cl), c. 1886 (C2), c. 1902 (Dl), c. 1912 (D2) and c. 1941 (E; Table 2). While the first two dates are interpreted to be glacier advances due to their location and morphology, the later dates may represent standstills and/or minor read- vances that occurred since the last major advance in the 1870s. Between AD 1628 and 1872/75 the glacier receded upvalley before readvancing and forming moraine C, tilting and killing trees that were 127 and 80 years old, respectively. Therefore, we conclude that in the intervening 245 years between the advance that formed moraine B around AD 1628 and the advance that formed moraine C in AD 1872/75 Glaciar Lengua receded behind the position of moraine C around AD 1730 to an unknown position upvalley. The date AD 1730 was obtained by subtracting 127 years (the age of the tree tilted on moraine C) and 15 years for ecesis from AD 1872, the time that tree was tilted by the glacier advance. This also means that our record of glacier advances between 1730 and 1872/75 may be incom- plete as the following advance would have overridden and destroyed these moraines. This scenario is further corrobo- rated by dated advances during the late eighteenth century at the Hielo Patagonico Sur (Table 3; Mercer, 1970) and also in northern Patagonia (Table 3; Lawrence and Lawrence, 1959; R6thlisberger, 1986; Villalba et al., 1990). Along Rio Lengua (Figure 2), approximately 250 m further downstream from the outermost LIA moraine, a peat bog is eroded by the river and approximately 250 cm of peat are over- lying fluvial sediments. At the boundary of the peat and fluvial sediments are several well-preserved in situ rooted trees, which were radiocarbon dated to 4850 cal. yr BP. This indicates that Glaciar Lengua has not advanced beyond this point since then. Furthermore, at the bottom of a core from a small lake on Isla Chandler (Figure 1 inset) the transition of glacier clay to organic-rich lake sediments was recorded and radiocarbon dated to 12 540 cal. yr BP, thus indicating that this area was ice-free since then. No terrestrial or submarine moraines are recorded between the LIA moraines and Isla Chandler and therefore it is argued that Glaciar Lengua reached a position close to present-day or LIA conditions sometime soon after 12 540 cal. yr BP and has since then not reached a more exten- sive position than during the LIA. Therefore, the maximum LIA position of Glaciar Lengua marks the most extensive extent during at least the last 5000 years and possibly through- out the Holocene. Discussion and conclusions Regional ecesis rates The time interval established for ecesis is of great importance for comparison of dendrochronologically dated glacier fluctua- tions. The time interval of 15 years for ecesis at our study site is to some degree comparable to ecesis intervals reported from other areas of the Patagonian Andes (Table 4). However, ecesis is significantly influenced by the local climatic conditions which change dramatically from our study site in the south towards the north, and from the west of the Andes to the east. Many of these differences can be ascribed to dramatic changes in the local precipitation regimes. At Monte Tronador at 410S ecesis was found to take 5-10 years in sheltered spots and up to 67 years on the exposed val- ley bottom (Villalba et al., 1990). Veblen et al. (1989) estimated ecesis to be 1-3 years in the same area. Table 2 Location, number and ages of sampled trees on the north and south sides of Rio Lengua. Sampling site numbers are shown in Figure 2 (inset). In the last column, estimated dates of glacier advances are derived from ring counts added to estimates of 15 years for ecesis and three years for growth to sampling height. The most probable date for each moraine is given in bold type. Moraine Sampling Sampled Age (N) Age (S) Date AD site tree years years number numbers A n/a n/a n/a n/a n/a B 9 12 354 n/a 1628 C1 5&8 13 116 109 1865/1872 C1 8 1 n/a n/a 1875 (date of death) C1 5 1 n/a n/a 1872 (date of tilt) C2 3&4 14 n/a 96 1886 DI 6 11 80 n/a 1902 D2 2&7 14 70 66 1912 E 1 15 n/a 41 1941 I Johanes Koch and Rolf Kilian: 'Little Ice Age' glacier fluctuations, Gran Campo Nevado, Chile 25 Table 3 Dated LIA glacier advances in Patagonia from previous publications. The table is ordered from north to south and the icefields are separated into east and west of the divide Location Ages for dated moraines Method of dating Reference Northern Patagonia: Mt Tronador (41-S) Glaciar Frias >AD 1236, c. 1638, - 1722, Tree rings Villalba et al., 1990 '1747, -1839, c. 1881, '1914, 1-4952, 1977 Glaciar Rio Manso Early eighteenth century, Tree rings Lawrence and Lawrence, 1959 AD 1795, 1809 -21, 1832-34, 1847 Glaciar Rio Manso AD 1040, 1330, 1365, 1640, Radiocarbon R6thlisberger, 1986 1800-50 HPN (46°30'S-47°30'S) - west side Glaciars Gualas, Reicher AD 1876, 1909, 1954, 1970 Tree rings Harrison and Winchester, 1998 Glaciar San Rafael AD 1675, 1675-1766, 1882 Radiocarbon Heusser, 1960 HPN (46°30'S-47°30'S) - east side Glaciar Soler AD 1850s, 1890s, 1910s, 1940s Tree rings Sweda, 1987 Glaciar Soler C. AD 1222-1342 Radiocarbon Glasser et al., 2002 Glaciars Colonia, Arenales, Arco AD 1870s, 1900s, 1940s Tree rings Harrison and Winchester, 2000 Glaciar Nef AD 1863, 1884, 1935 Tree rings, lichen Winchester et al., 2001 HPS (48°20'S-51°30'S) - west side Glaciar Ofhidro Norte AD 1790, 1850-60, 1940s Tree rings Mercer, 1970 Glaciar Bernardo AD 1775, 1810-20, 1940s Tree rings Mercer, 1970 Glaciar Tempano AD 1760 ± 10, 1940s Tree rings Mercer, 1970 Glaciar Hammick AD 1750, 1840, 1940s Tree rings Mercer, 1970 HPS (48°20'S-51o30S) - east side Glaciar Narvaez Seventeenth century, AD 1880 Estimate, historic Mercer, 1968 Paine National Park AD 1660 or 1725, 1805, 1845, Tree rings Marden and Clapperton, 1995 post-1 890 GCN (' 53°S) Glaciar Lengua -AD 1628, 1872/75, Tree rings This study rI_I1886, 11.1902, - 1912, - 1941 Cordillera Darwin (54'S-55°S) Bahia Pia No evidence for LIA; Radiocarbon Kuylenstierna et al., 1996 c. 940-675 BP Glaciar Ema (Mt Sarmiento) c. 695 BP, c. 335 BP, c. 315 BP, Radiocarbon, estimates Strelin and Casassa, unpublished data 140-90, 110-60, 90-60 At various glaciers on the eastside of Hielo Patagonico Norte (HPN; 46°30' to 47°30'S) ecesis was found to take between 22 and 93 years depending on whether the site was near water or on an exposed mountainside (Winchester and Harrison, 2000; Winchester et al., 2001). Sweda (1987) obtained a short ecesis period of 24-30 years for his study site east of the Andes, but his study site was near water and thus compares favourably to other estimates from the same area. On the west side of the icefield, ecesis was determined to be between less than 10 years (Warren, 1993; Winchester and Harrison, 1996) and a maximum of 25 years (Heusser, 1964). This indicates that generally at this latitude ecesis on the west side of the Andes is much shorter than on the leeward side, suggesting that low precipitation east of the Andes hinders tree recruitment to some degree. This is also suggested by the fact that east of the Andes, near water, ecesis is similar to that of the wet west side. At Hielo Patag6nico Sur (HPS; 48°20' to 51°30'S) no differ- ence in ecesis east and west of the Andes is obvious. Nichols and Miller (1951) estimated that ecesis takes more than 70 years at Glaciar Ameghino on the east side. Pisano (1978) found an even longer period of around 100 years for his site, also east of the Andes. Recent studies at various glaciers at the east side of HPS show that ecesis takes less than 50 years (Dollenz, 1991; Armesto et al., 1992). It seems that, further east, less time is needed for tree recruitment, as is apparent from the latter two studies. Mercer (1970; 1982), studying sites both east and west of the Andes, estimated ecesis to be similar on both sides and to take up to 70 years or more. If following along a transect from west to east at this latitude one could argue that, in accordance with a very similar vegetation cover directly east and west of the Andes, ecesis is in the same range too (> 70 years). However, further east, as with the vegetation cover, changes in ecesis are apparent (40-50 years versus > 70 years) and are most likely related to changes in the precipi- tation regime. It is interesting to note that studies finding long ecesis (> 70 years) were mostly done until the 1980s and studies finding shorter ecesis (< 40 years) were done after 1990 (Table 4). Therefore, it could be argued that in recent times, due to the worldwide warming trend, ecesis takes less time than it did in the early and mid-twentieth century and that tree recruitment at this latitude has generally improved in the present-day climate. South of our study site, in the Cordillera Darwin (54-55'S), a region climatically quite similar to our site, Holmlund and Fuenzalida (1995) obtained an estimate of less than 20 years for ecesis, which is in good accordance with our findings. Why ecesis is so much shorter this far south, where precipi- tation is very high (> 6000 mm; Schneider et al., 2003) and thus similar to conditions at HPS, cannot be easily explained. Both studies were done in recent times and thus could be explained by the aforementioned warming trend that favours tree recruitment this far south. However, our best estimate for ecesis comes from a LIA moraine, formed in the 1870s, 26 The Holocene 15 (2005) Table 4 Ecesis estimates in Patagonia from previous publications. Again they are ordered from north to south and the icefields are separated into east and west of the divide Location Estimate Method Reference Northern Patagonia: Mt Tronador (41°S) Glaciar Casa Pangue 1-3 years Estimate Veblen et al., 1989 Glaciar Frias 5-10 years In sheltered spots Villalba et al., 1990 67 years Exposed valley bottom HPN (46°30'S-47°30'S) - west side Glaciar San Rafael 25 years Estimate Heusser, 1964 Glaciar San Rafael < 10 years 50 cm tall Nothofagus at Warren, 1993 spot under ice in early 1980s Glaciar San Rafael min. 6 years Estimate Winchester and Harrison, 1996 HPN (46°30'S-47°30'S) - east side E-side HPN 22 years Near water level Winchester and Harrison, 2000 26 years Valley sides and terraces 93 years Exposed mountainside Glaciar Soler 24-30 years Estimate Sweda, 1987 Glaciar Nef 35-92 years See Winchester and Harrison, 2000 Winchester et al., 2001 HPS (48°20'S-51°30'S) - west side Glaciar Tempano 70 years Tree tilt date 1760 ± 10; Mercer, 1970 oldest new tree: 140 years HPS (48°20'S-51°30'S) - east side E-side HPS >70 years Older than 1897 moraine in Mercer, 1982 1966 still tree less Glaciar Ameghino >70 years 80-year-old LIA moraines still Nichols and Miller, 1951 devoid of vegetation Glaciar Dickson <40 years Estimate Dollenz, 1991 Torres del Paine 40-50 years Estimate Armesto et al., 1992 Glaciar Serrano -100 years Estimate Pisano, 1978 GCN (' 53°S) Glaciar Lengua - 15 years Remote sensing, calendar dated This study Cordillera Darwin (54°S-55°S) Bahia Pia <20 years 30-year-old tree on spot Holmlund and Fuenzalida, 1995 still ice covered in 1943 on which germination of new trees occurred at a time when colder conditions still prevailed and tree recruitment was not yet favoured by the warming trend. Both our estimates of ecesis, though from different centuries and climates, indicate a rather constant ecesis period not influenced by minor changes in climate. The difference of ecesis period found in our study and at various glaciers of HPS remains to be explained. The results at Gran Campo Nevado corroborate the remark of Warren and Sugden (1993: 325) that 'such wide divergence casts doubt on the reliability of any regional den- drochronology, and emphasizes the importance of detailed case studies in this region of dramatic local contrasts'. Regional comparison of glacial chronologies Reconstruction of Glaciar Lengua's fluctuations shows a great degree of synchronicity with other glacier fluctuations along the Patagonian Andes between 41°S and 55°S (Table 3 and Figure 5). Along this section of the Andes they present one Northem Patagonia: Mt Tronador (410S) HPN (46*30'S47o30iS) HPS (48°20'S-51o30'S) GCN (-53*S) Cordillera Darwin (540S-550S) w E Glaciar Fnas - Glaciar Rio Manso Glaciar Rio Manso _ Glaciars Gualas, Reicher _ Glaciar San Rafael Glaciar Soler - Glaciar Nef Glaciars Arco, Colonia, Arenales ('-1hivir t-Whirim Kil Glaciar Bemardo IW Glaciar Tempano Glaaar Hamm ck E I Glaciar Narvaez E Paine National Park I Glaciar Lenaua Glaciar Ema I _ Bahia Pia Date AD 120( Figure 5 Overview of dated glacier advances in Patagonia as shown in Table 3. Horizontal bars indicate rather precise dates (dendrochronology, lichenometry and some radiocarbon dates), vertical bars indicate uncertain radiocarbon dates or estimates, and vertical bars with a circle indicate dates with questionable methods. For a discussion, see the text. As there is some overall correlation between Glaciar Lengua and other sites in Pata- gonia, it is proposed that advance A at Glaciar Lengua occurred some time in the thirteenth and/or fourteenth centuries. Also, it should be pointed out that there is an obvious gap in Glaciar Lengua advances between the late seventeenth and early nineteenth centuries. .. . . . . . . .. .. . . .. . .. . .. . . _ _ Johannes Koch and Rolf Kilian: 'Litfle Ice Age' glacier fluctuations, Gran Campo Nevado, Chile 27 of the most pronounced climate divides on earth. Glaciers on the western side and the divide zone of the Andes may be strongly influenced by precipitation and by the intensity of the westerlies, while glacier fluctuations on the eastern side of the Andes may more likely be controlled by temperature. It is thus obvious that comparisons along almost 2000 km from north to south and across this very pronounced climate divide bear many complications. However, as they show a strong degree of synchronicity it appears relevant to include a comparison of the results presented here and the wider regional context. At Monte Tronador, the northernmost location considered here, two major glacial advances of Glaciar Frias have been dated to between AD 1270 and 1380, and 1520 and 1670 (Villalba et al., 1990). The former advance could coincide with the formation of moraine A at Glaciar Lengua (see below), and the latter may be equal to our moraine B. Only the latter advance and recessional moraines of Glaciar Frias could precisely be dated by tree-ring records of damaged trees and dates of 1638, 1722, 1747, 1839, 1881, 1914, 1952 and 1977 were found (Table 3 and Figure 5). Similar results at Glaciar Rio Manso (Lawrence and Lawrence, 1959; R6thlisberger, 1986) show a strong synchronous response to some climate forcing at Monte Tronador. Around Hielo Patagonico Norte only the culmination of LIA glacier fluctuations, and the subsequent recessional moraines, have been dated. These results suggest that the LIA culminated during the second half of the nineteenth cen- tury, with various standstills in the first half of the twentieth century (Table 3 and Figure 5; Sweda, 1987; Harrison and Winchester, 1998; 2000; Winchester and Harrison, 2000; Winchester et al., 2001). Only Glaciar San Rafael shows glacial advances dating to the late seventeenth and early eighteenth centuries (Heusser, 1960), a period of advance found at all other major icefields along the transect. It therefore could be argued that most studied glaciers of HPN have obliterated any previous evidence of this advance by later more extensive advances. Between AD 1222 and 1342 Glaciar Soler was also much more extensive than at present (Glasser et al., 2003), again a phase of glacier activity found at various locations along this transect and therefore most likely a regional event. Glaciers of Hielo Patagonico Sur formed moraines in the late seventeenth century, in the mid- to late eighteenth century, in the early to mid-nineteenth century and the first half of the twentieth century (Table 3 and Figure 5; Heusser, 1960; Mer- cer, 1968; 1970; Marden and Clapperton, 1995). All studied glaciers at HPS show a synchronous response most likely due to a regional climate signal rather than to local conditions. On Isla Riesco (53°22'S; Figure 1), just east of Gran Campo Nevado, Coppinger (1883: 124) observed in 1880 a glacier advancing into the forest and overturning trees, closely corre- sponding to our advance forming moraine C, with this mor- aine incorporating 'crushed, torn and distorted out of shape trees'. This observation supports our assumption that Glaciar Lengua receded further upvalley before readvancing into forest and reaching its late-nineteenth century maximum. In the Cordillera Darwin on Tierra del Fuego varying responses of glaciers during the twentieth century have been noted (Holmlund and Fuenzalida, 1995). Glaciers on the northern and eastern sides of the Cordillera Darwin have been receding since the start of the century. However, those on the southern and western sides only recently reached positions at or close to their Holocene maxima. Kuylenstierna et al. (1996) found no evidence for LIA glacier activity at Bahia Pia on the southern side of the Cordillera Darwin and noted that the only advance coming close to the LIA time interval has been radiocarbon dated to between 940 and 675 BP. In contrast to these findings Strelin and Casassa (unpublished data) found 'Little Ice Age' glacier activity at their study site west of the Cordillera Darwin and radiocarbon dated the mor- aines to c. 695 BP, 335 BP and c. 315 BP. The sizes of the tree trunks were used to date the innermost moraines to 140-90, 110-60, 90 -60 years ago (Table 3 and Figure 5). Even though both methods of dating are questionable in their precision, they indicate LIA advances and are assumed to be important for inclusion in this comparison. In the Patagonian Andes, the sparse data available show that overall the culmination of LIA glacier advances occurred between AD 1600 and 1700 (e.g., Mercer, 1970; R6thlisberger, 1986; Aniya, 1996). Various glaciers at Hielo Patagonico Norte and Hielo Patagonico Sur also formed prominent moraines around 1870 and 1880 (Warren and Sugden, 1993; Winchester et al., 2001; Luckman and Villalba, 2001). Our data from Gran Campo Nevado further supports this scenario. Most radiocarbon dates in the Patagonian Andes fall in three periods: AD 1280-1460, AD 1560-1690 and around AD 1860 (Villalba, 1994), the latter advance corresponding with our advance C, and the penultimate occurring concurrent with advance B at Glaciar Lengua. We suggest that our undated moraine A was formed during the first period of widespread glacier advances in Patagonia from 1280 to 1460. This hypoth- esis is supported by the soil on moraine A being only a little more developed than on moraine B, thus excluding an earlier mid-Holocene date for this moraine. Furthermore, our study suggests that at Glaciar Lengua, and from observations of neighbouring glaciers at Gran Campo Nevado, the 'Little Ice Age' advance was possibly the most extensive one during the Holocene for this ice cap. Acknowledgements This study was funded by a grant of the German Academic Exchange Service (DAAD) to JK and the Deutsche For- schungsgemeinschaft (DFG: Ki 456/6-1). Special thanks go to the technical staff of the Institute for Forest Growth, University of Freiburg: C. Koch and F. Baab. Two anony- mous reviewers helped immensely in improving the manu- script. Andrew Makepeace helped in improving the English. References Aniya, M. 1995: Holocene glacial chronology in Patagonia: Tyndall and Upsala Glacier. Arctic and Alpine Research 27, 311-22. 1996: Holocene variations of Ameghino Glacier, southern Patagonia. The Holocene 6, 247-52. Armesto, J.J., Casassa, I. and Dollenz, 0. 1992: Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile. Vegetatio 98, 13-22. Casassa, G. 1995: Glacier inventory in Chile: current status and recent glacier variations. Annals of Glaciology 21, 317-22. Clapperton, C.M. and Sugden, D.E. 1988: Holocene glacier fluctua- tions in South America and Antarctica. Quaternary Science Reviews 7, 185-98. Coppinger, R.W. 1883: Cruise of the 'Alert'. London: W.S. Sonnenschein. Dollenz, 0. 1991: Sucesion vegetal en el sistema morrenico del Glaciar Dickson, Magallanes, Chile. Anales del Insituto de la Patagonia Seria Ciencias Naturales 20, 50-60. Glasser, N.F., Hambrey, M.J. and Aniya, M. 2002: An advance of Soler Glacier, North Patagonian Icefield, at c. AD 1222-1342. The Holocene 12, 113-20. Grove, J.M. 1988: The Little Ice Age. London: Methuen. 28 The Holocene 15 (2005) Harrison, S. and Winchester, V. 1998: Historical fluctuations of the Gualas and Reicher Glaciers, North Patagonian Icefield, Chile. The Holocene 8, 481-85. 2000: Nineteenth- and twentieth-century glacier fluctuations and climatic implications in the Arco and Colonia valleys, Hielo Patag6nico Norte, Chile. Arctic, Antarctic and Alpine Research 32, 55-63. Heusser, C.J. 1960: Late-Pleistocene environments of the Laguna de San Rafael area, Chile. Geographical Review 50, 555-77. 1964: Some pollen profiles from Laguna de San Rafael area, Chile. In Cranwell, L.M., editor, Ancient Pacificflora; the pollen story, Honolulu: University of Hawaii Press, 95-115. Holmes, R.L. 1983: Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, 69-75. Holmlund, P. and Fuenzalida, H. 1995: Anomalous glacier responses to 20th century climatic changes in Darwin Cordillera, southern Chile. Journal of Glaciology 41, 465-73. Holzhauser, H. 1985: Neue Ergebnisse zur Gletscher- und Klima- geschichte des Spaltmittelalters und der Neuzeit. Geographica Helvetica 40, 168-85. Kuylenstierna, J.L., Rosqvist, G.C. and Holmlund, P. 1996: Late- Holocene glacier variations in the Cordillera Darwin, Tierra del Fuego, Chile. The Holocene 6, 353-58. Lawrence, D.B. and Lawrence, E.G. 1959: Recent glacier variations in southern South America. American Geographic Society, Technical Report, ONR Contract 641(04), 39 pp. Luckman, B.H. 2000: The Little Ice Age in the Canadian Rockies. Geomorphology 32, 357-84. Luckman, B.H. and Villalba, R. 2001: Assessing the synchroneity of glacier fluctuations in the western Cordillera of the Americas during the last millennium. In Markgraf, V., editor, Interhemispheric climate linkages, New York: Academic Press, 119-40. Marden, C.J. and Clapperton, C.M. 1995: Fluctuations of the South Patagonian Ice-field during the last glaciation and the Holocene. Journal of Quaternary Science 10, 197-210. Matthews, J.A. 1992: The ecology of recently-deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge: Cambridge University Press. McCarthy, D.P. and Luckman, B.H. 1993: Estimating ecesis for tree-ring dating of moraines: a comparative study from the Canadian Cordillera. Arctic and Alpine Research 25, 63-68. McCarthy, D.P., Luckman, B.H. and Kelly, P.E. 1991: Sampling height-age error correction for spruce seedlings in glacial forefield, Canadian Cordillera. Arctic and Alpine Research 23, 451-55. Mercer, J.H. 1968: Variations of some Patagonian glaciers since the Late-Glacial. American Journal of Science 266, 91-109. 1970: Variations of some Patagonian glaciers since the Late- Glacial: II. American Journal of Science 269, 1-25. 1982: Holocene glacier variations in southern South America. Striae 18, 35-40. Nichols, R.L. and Miller, M.M. 1951: Glacial geology of Ameghino Valley, Lago Argentino, Patagonia. Geographical Review 41, 274-94. Pisano, E. 1978: Establecimiento de Nothofagus betuloides (Mirb.) Blume (Coigue de Magallanes) en un valle en proceso de desglaciacion. Anales del Insituto de la Patagonia 9, 107-28. Rothlisberger, F. 1986: 10 000 Jahre Gletschergeschichte der Erde. Aarau: Verlag Sauerlander. Schneider, C., Glaser, M., Kilian, R., Santana, A., Butorovic, N. and Casassa, G. 2003: Weather observations across the southern Andes at 53°S. Physical Geography 24, 97-119. Sigafoos, R.S. and Hendricks, E.L. 1969: The time interval between stabilization of alpine glacial deposits and establishment of tree seedlings. US Geological Survey Professional Paper 650-B, 89-93. Stokes, M.A. and Smiley, T.L. 1968: An introduction to tree-ring dating. Tucson: The University of Arizona Press. Sweda, T. 1987: Recent retreat of Soler Glacier, Patagonia, as seen from vegetation recovery. Bulletin of Glacier Research 4, 119-24. Veblen, T.T., Ashton, D.H., Rubulis, S., Lorenz, D.C. and Cortes, M. 1989: Nothofagus stand development on in-transit moraines, Casa Pangua Glacier, Chile. Arctic and Alpine Research 21, 144-55. Villalba, R. 1994: Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America. Climatic Change 26, 183-97. Villalba, R., Leiva, J.C., Rubulis, S., Suarez, J. and Lenzano, L. 1990: Climate, tree-ring, and glacial fluctuations in the Rio Frias valley, Rio Negro, Argentina. Arctic and Alpine Research 22, 215-32. Warren, C.R. 1993: Rapid recent fluctuations of the calving San Rafael Glacier, Chilean Patagonia: climatic or non-climatic. Geografiska Annaler 75A, 111-25. Warren, C.R. and Sugden, D.E. 1993: The Patagonian icefields: a glaciological review. Arctic and Alpine Research 25, 316-31. Wiles, G.C., Barclay, D.J. and Calkin, P.E. 1999: Tree-ring dated 'Little Ice Age' histories of maritime glaciers from western Prince William Sound, Alaska. The Holocene 9, 163-73. Winchester, V. and Harrison, S. 1996: Recent oscillations of the San Quintin and San Rafael Glaciers, Patagonian Chile. Geografiska Annaler 78A, 35-49. 2000: Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonian Icefield, Chile. Geomorphology 34, 181-94. Winchester, V., Harrison, S. and Warren, C.R. 2001: Recent retreat Glacier Nef, Chilean Patagonia, dated by lichenometry and dendrochronology. Arctic, Antarctic and Alpine Research 33, 266-73. a</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<back>
<ref-list>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Aniya, M.</surname>
</name>
<year>1995</year>
:
<article-title>Holocene glacial chronology in Patagonia: Tyndall and Upsala Glacier</article-title>
.
<source>Arctic and Alpine Research</source>
<volume>27</volume>
,
<fpage>311</fpage>
-
<lpage>322</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Aniya, M.</surname>
</name>
<year>1996</year>
:
<article-title>Holocene variations of Ameghino Glacier, southern Patagonia</article-title>
.
<source>The Holocene</source>
<volume>6</volume>
,
<fpage>247</fpage>
-
<lpage>252</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Armesto, J.J.</surname>
</name>
,
<name name-style="western">
<surname>Casassa, I.</surname>
</name>
and
<name name-style="western">
<surname>Dollenz, O.</surname>
</name>
<year>1992</year>
:
<article-title>Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile</article-title>
.
<source>Vegetatio</source>
<volume>98</volume>
,
<fpage>13</fpage>
-
<lpage>22</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Casassa, G.</surname>
</name>
<year>1995</year>
:
<article-title>Glacier inventory in Chile: current status and recent glacier variations</article-title>
.
<source>Annals of Glaciology</source>
<volume>21</volume>
,
<fpage>317</fpage>
-
<lpage>322</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Clapperton, C.M.</surname>
</name>
and
<name name-style="western">
<surname>Sugden, D.E.</surname>
</name>
<year>1988</year>
:
<article-title>Holocene glacier fluctuations in South America and Antarctica</article-title>
.
<source>Quaternary Science Reviews</source>
<volume>7</volume>
,
<fpage>185</fpage>
-
<lpage>198</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Coppinger, R.W.</surname>
</name>
<year>1883</year>
:
<source>Cruise of the‘Alert’</source>
.
<publisher-loc>London</publisher-loc>
:
<publisher-name>W.S. Sonnenschein</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Dollenz, O.</surname>
</name>
<year>1991</year>
:
<article-title>Sucesion vegetal en el sistema morrenico del Glaciar Dickson, Magallanes, Chile</article-title>
.
<source>Anales del Insituto de la Patagonia Seria Ciencias Naturales</source>
<volume>20</volume>
,
<fpage>50</fpage>
-
<lpage>60</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Glasser, N.F.</surname>
</name>
,
<name name-style="western">
<surname>Hambrey, M.J.</surname>
</name>
and
<name name-style="western">
<surname>Aniya, M.</surname>
</name>
<year>2002</year>
:
<article-title>An advance of Soler Glacier, North Patagonian Icefield, at c</article-title>
. AD 1222-1342.
<source>The Holocene</source>
<volume>12</volume>
,
<fpage>113</fpage>
-
<lpage>120</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Grove, J.M.</surname>
</name>
<year>1988</year>
:
<source>The Little Ice Age</source>
.
<publisher-loc>London</publisher-loc>
:
<publisher-name>Methuen</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Harrison, S.</surname>
</name>
and
<name name-style="western">
<surname>Winchester, V.</surname>
</name>
<year>1998</year>
:
<article-title>Historical fluctuations of the Gualas and Reicher Glaciers, North Patagonian Icefield, Chile</article-title>
.
<source>The Holocene</source>
<volume>8</volume>
,
<fpage>481</fpage>
-
<lpage>485</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Harrison, S.</surname>
</name>
and
<name name-style="western">
<surname>Winchester, V.</surname>
</name>
<year>2000</year>
:
<article-title>Nineteenth- and twentieth-century glacier fluctuations and climatic implications in the Arco and Colonia valleys, Hielo Patagónico Norte, Chile</article-title>
.
<source>Arctic, Antarctic and Alpine Research</source>
<volume>32</volume>
,
<fpage>55</fpage>
-
<lpage>63</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Heusser, C.J.</surname>
</name>
<year>1960</year>
:
<article-title>Late-Pleistocene environments of the Laguna de San Rafael area, Chile</article-title>
.
<source>Geographical Review</source>
<volume>50</volume>
,
<fpage>555</fpage>
-
<lpage>577</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Heusser, C.J.</surname>
</name>
<year>1964</year>
:
<article-title>Some pollen profiles from Laguna de San Rafael area, Chile</article-title>
. In
<name name-style="western">
<surname>Cranwell, L.M.</surname>
</name>
, editor,
<source>Ancient Pacificflora; the pollen story</source>
,
<publisher-loc>Honolulu</publisher-loc>
:
<publisher-name>University of Hawaii Press</publisher-name>
,
<fpage>95</fpage>
-
<lpage>115</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Holmes, R.L.</surname>
</name>
<year>1983</year>
:
<article-title>Computer-assisted quality control in tree-ring dating and measurement</article-title>
.
<source>Tree-Ring Bulletin</source>
<volume>43</volume>
,
<fpage>69</fpage>
-
<lpage>75</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Holmlund, P.</surname>
</name>
and
<name name-style="western">
<surname>Fuenzalida, H.</surname>
</name>
<year>1995</year>
:
<article-title>Anomalous glacier responses to 20th century climatic changes in Darwin Cordillera, southern Chile</article-title>
.
<source>Journal of Glaciology</source>
<volume>41</volume>
,
<fpage>465</fpage>
-
<lpage>473</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Holzhauser, H.</surname>
</name>
<year>1985</year>
:
<article-title>Neue Ergebnisse zur Gletscher- und Klimageschichte des Spältmittelalters und der Neuzeit</article-title>
.
<source>Geographica Helvetica</source>
<volume>40</volume>
,
<fpage>168</fpage>
-
<lpage>185</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Kuylenstierna, J.L.</surname>
</name>
,
<name name-style="western">
<surname>Rosqvist, G.C.</surname>
</name>
and
<name name-style="western">
<surname>Holmlund, P.</surname>
</name>
<year>1996</year>
:
<article-title>Late-Holocene glacier variations in the Cordillera Darwin, Tierra del Fuego, Chile</article-title>
.
<source>The Holocene</source>
<volume>6</volume>
,
<fpage>353</fpage>
-
<lpage>358</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Lawrence, D.B.</surname>
</name>
and
<name name-style="western">
<surname>Lawrence, E.G.</surname>
</name>
<year>1959</year>
:
<article-title>Recent glacier variations in southern South America</article-title>
.
<source>American Geographic Society, Technical Report</source>
, ONR Contract
<volume>641</volume>
(
<issue>04</issue>
),
<fpage>39</fpage>
-
<lpage>39</lpage>
pp.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Luckman, B.H.</surname>
</name>
<year>2000</year>
:
<article-title>The Little Ice Age in the Canadian Rockies</article-title>
.
<source>Geomorphology</source>
<volume>32</volume>
,
<fpage>357</fpage>
-
<lpage>384</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Luckman, B.H.</surname>
</name>
and
<name name-style="western">
<surname>Villalba, R.</surname>
</name>
<year>2001</year>
:
<article-title>Assessing the synchroneity of glacier fluctuations in the western Cordillera of the Americas during the last millennium</article-title>
. In
<name name-style="western">
<surname>Markgraf, V.</surname>
</name>
, editor,
<source>Interhemispheric climate linkages</source>
,
<publisher-loc>New York</publisher-loc>
:
<publisher-name>Academic Press</publisher-name>
,
<fpage>119</fpage>
-
<lpage>140</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Marden, C.J.</surname>
</name>
and
<name name-style="western">
<surname>Clapperton, C.M.</surname>
</name>
<year>1995</year>
:
<article-title>Fluctuations of the South Patagonian Ice-field during the last glaciation and the Holocene</article-title>
.
<source>Journal of Quaternary Science</source>
<volume>10</volume>
,
<fpage>197</fpage>
-
<lpage>210</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Matthews, J.A.</surname>
</name>
<year>1992</year>
:
<source>The ecology of recently-deglaciated terrain. A geoecological approach to glacier forelands and primary succession</source>
.
<publisher-loc>Cambridge</publisher-loc>
:
<publisher-name>Cambridge University Press</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>McCarthy, D.P.</surname>
</name>
and
<name name-style="western">
<surname>Luckman, B.H.</surname>
</name>
<year>1993</year>
:
<article-title>Estimating ecesis for tree-ring dating of moraines: a comparative study from the Canadian Cordillera</article-title>
.
<source>Arctic and Alpine Research</source>
<volume>25</volume>
,
<fpage>63</fpage>
-
<lpage>68</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>McCarthy, D.P.</surname>
</name>
,
<name name-style="western">
<surname>Luckman, B.H.</surname>
</name>
and
<name name-style="western">
<surname>Kelly, P.E.</surname>
</name>
<year>1991</year>
:
<article-title>Sampling height-age error correction for spruce seedlings in glacial forefield, Canadian Cordillera</article-title>
.
<source>Arctic and Alpine Research</source>
<volume>23</volume>
,
<fpage>451</fpage>
-
<lpage>455</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Mercer, J.H.</surname>
</name>
<year>1968</year>
:
<article-title>Variations of some Patagonian glaciers since the Late-Glacial</article-title>
.
<source>American Journal of Science</source>
<volume>266</volume>
,
<fpage>91</fpage>
-
<lpage>109</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Mercer, J.H.</surname>
</name>
<year>1970</year>
:
<article-title>Variations of some Patagonian glaciers since the Late-Glacial: II</article-title>
.
<source>American Journal of Science</source>
<volume>269</volume>
,
<fpage>1</fpage>
-
<lpage>25</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Mercer, J.H.</surname>
</name>
<year>1982</year>
:
<article-title>Holocene glacier variations in southern South America</article-title>
.
<source>Striae</source>
<volume>18</volume>
,
<fpage>35</fpage>
-
<lpage>40</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Nichols, R.L.</surname>
</name>
and
<name name-style="western">
<surname>Miller, M.M.</surname>
</name>
<year>1951</year>
:
<article-title>Glacial geology of Ameghino Valley, Lago Argentino, Patagonia</article-title>
.
<source>Geographical Review</source>
<volume>41</volume>
,
<fpage>274</fpage>
-
<lpage>294</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Pisano, E.</surname>
</name>
<year>1978</year>
:
<article-title>Establecimiento de Nothofagus betuloides (Mirb.) Blume (Coigue de Magallanes) en un valle en proceso de desglaciacion</article-title>
.
<source>Anales del Insituto de la Patagonia</source>
<volume>9</volume>
,
<fpage>107</fpage>
-
<lpage>128</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Röthlisberger, F.</surname>
</name>
<year>1986</year>
:
<source>10 000 Jahre Gletschergeschichte der Erde</source>
.
<publisher-loc>Aarau</publisher-loc>
:
<publisher-name>Verlag Sauerländer</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Schneider, C.</surname>
</name>
,
<name name-style="western">
<surname>Glaser, M.</surname>
</name>
,
<name name-style="western">
<surname>Kilian, R.</surname>
</name>
,
<name name-style="western">
<surname>Santana, A.</surname>
</name>
,
<name name-style="western">
<surname>Butorovic, N.</surname>
</name>
and
<name name-style="western">
<surname>Casassa, G.</surname>
</name>
<year>2003</year>
:
<article-title>Weather observations across the southern Andes at 53°S</article-title>
.
<source>Physical Geography</source>
<volume>24</volume>
,
<fpage>97</fpage>
-
<lpage>119</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sigafoos, R.S.</surname>
</name>
and
<name name-style="western">
<surname>Hendricks, E.L.</surname>
</name>
<year>1969</year>
:
<article-title>The time interval between stabilization of alpine glacial deposits and establishment of tree seedlings</article-title>
.
<source>US Geological Survey Professional Paper</source>
<volume>650-B</volume>
,
<fpage>89</fpage>
-
<lpage>93</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="book" xlink:type="simple">
<name name-style="western">
<surname>Stokes, M.A.</surname>
</name>
and
<name name-style="western">
<surname>Smiley, T.L.</surname>
</name>
<year>1968</year>
:
<source>An introduction to tree-ring dating</source>
.
<publisher-loc>Tucson</publisher-loc>
:
<publisher-name>The University of Arizona Press</publisher-name>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Sweda, T.</surname>
</name>
<year>1987</year>
:
<article-title>Recent retreat of Soler Glacier, Patagonia, as seen from vegetation recovery</article-title>
.
<source>Bulletin of Glacier Research</source>
<volume>4</volume>
,
<fpage>119</fpage>
-
<lpage>124</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Veblen, T.T.</surname>
</name>
,
<name name-style="western">
<surname>Ashton, D.H.</surname>
</name>
,
<name name-style="western">
<surname>Rubulis, S.</surname>
</name>
,
<name name-style="western">
<surname>Lorenz, D.C.</surname>
</name>
and
<name name-style="western">
<surname>Cortes, M.</surname>
</name>
<year>1989</year>
:
<article-title>Nothofagus stand development on in-transit moraines, Casa Pangua Glacier, Chile</article-title>
.
<source>Arctic and Alpine Research</source>
<volume>21</volume>
,
<fpage>144</fpage>
-
<lpage>155</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Villalba, R.</surname>
</name>
<year>1994</year>
:
<article-title>Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America</article-title>
.
<source>Climatic Change</source>
<volume>26</volume>
,
<fpage>183</fpage>
-
<lpage>197</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Villalba, R.</surname>
</name>
,
<name name-style="western">
<surname>Leiva, J.C.</surname>
</name>
,
<name name-style="western">
<surname>Rubulis, S.</surname>
</name>
,
<name name-style="western">
<surname>Suarez, J.</surname>
</name>
and
<name name-style="western">
<surname>Lenzano, L.</surname>
</name>
<year>1990</year>
:
<article-title>Climate, tree-ring, and glacial fluctuations in the Rio Frias valley, Rio Negro, Argentina</article-title>
.
<source>Arctic and Alpine Research</source>
<volume>22</volume>
,
<fpage>215</fpage>
-
<lpage>232</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Warren, C.R.</surname>
</name>
<year>1993</year>
:
<article-title>Rapid recent fluctuations of the calving San Rafael Glacier, Chilean Patagonia: climatic or non-climatic</article-title>
.
<source>Geografiska Annaler</source>
<volume>75A</volume>
,
<fpage>111</fpage>
-
<lpage>125</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Warren, C.R.</surname>
</name>
and
<name name-style="western">
<surname>Sugden, D.E.</surname>
</name>
<year>1993</year>
:
<article-title>The Patagonian icefields: a glaciological review</article-title>
.
<source>Arctic and Alpine Research</source>
<volume>25</volume>
,
<fpage>316</fpage>
-
<lpage>331</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Wiles, G.C.</surname>
</name>
,
<name name-style="western">
<surname>Barclay, D.J.</surname>
</name>
and
<name name-style="western">
<surname>Calkin, P.E.</surname>
</name>
<year>1999</year>
:
<article-title>Tree-ring dated‘Little Ice Age’ histories of maritime glaciers from western Prince William Sound, Alaska</article-title>
.
<source>The Holocene</source>
<volume>9</volume>
,
<fpage>163</fpage>
-
<lpage>173</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Winchester, V.</surname>
</name>
and
<name name-style="western">
<surname>Harrison, S.</surname>
</name>
<year>1996</year>
:
<article-title>Recent oscillations of the San Quintin and San Rafael Glaciers, Patagonian Chile</article-title>
.
<source>Geografiska Annaler</source>
<volume>78A</volume>
,
<fpage>35</fpage>
-
<lpage>49</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Winchester, V.</surname>
</name>
and
<name name-style="western">
<surname>Harrison, S.</surname>
</name>
<year>2000</year>
:
<article-title>Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonian Icefield, Chile</article-title>
.
<source>Geomorphology</source>
<volume>34</volume>
,
<fpage>181</fpage>
-
<lpage>194</lpage>
.</citation>
</ref>
<ref>
<citation citation-type="journal" xlink:type="simple">
<name name-style="western">
<surname>Winchester, V.</surname>
</name>
,
<name name-style="western">
<surname>Harrison, S.</surname>
</name>
and
<name name-style="western">
<surname>Warren, C.R.</surname>
</name>
<year>2001</year>
:
<article-title>Recent retreat Glacier Nef, Chilean Patagonia, dated by lichenometry and dendrochronology</article-title>
.
<source>Arctic, Antarctic and Alpine Research</source>
<volume>33</volume>
,
<fpage>266</fpage>
-
<lpage>273</lpage>
.</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Koch</namePart>
<affiliation>Department of Earth Sciences, Simon Fraser University, Burnaby, BC V5A 1s6, Canada;</affiliation>
<affiliation>E-mail: jkoch@sfu.ca</affiliation>
</name>
<name type="personal">
<namePart type="given">Rolf</namePart>
<namePart type="family">Kilian</namePart>
<affiliation>Lehrstuhl für Geologie, FB VI, Universität Trier, 54286 Trier, Germany</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>Sage Publications</publisher>
<place>
<placeTerm type="text">Sage CA: Thousand Oaks, CA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-01</dateIssued>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Moraine systems of Glaciar Lengua (unofficial name) and neighbouring glaciers of Gran Campo Nevado (53°S) in the southernmost Andes were mapped and dated by dendrochronological means. They were formed around AD 1628, 1872/1875, 1886, 1902, 1912 and 1941 with the advance in the 1870s being calendar dated. Recessional moraines within each moraine system correspond to brief standstills or minor readvances. A significantly older moraine could not be directly dated by dendrochronological methods as the forest on it was assumed to be second-generation or older. From soil-formation rates, it is assumed that this moraine was formed at some time between AD 1280 and 1460, a time in which many other glaciers in Patagonia formed moraines. Overall, fluctuations of Glaciar Lengua show a strong synchronicity to other glaciers in the Patagonian Andes between 41°S and 55°S. This study suggests that Glaciar Lengua and possibly all glaciers of Gran Campo Nevado reached their Holocene maximum during the‘Little Ice Age.’</abstract>
<subject>
<genre>keywords</genre>
<topic>‘Little Ice Age’</topic>
<topic>glacier variations</topic>
<topic>dendrochronology</topic>
<topic>southernmost Andes</topic>
<topic>late Holocene</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The Holocene</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0959-6836</identifier>
<identifier type="eISSN">1477-0911</identifier>
<identifier type="PublisherID">HOL</identifier>
<identifier type="PublisherID-hwp">sphol</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>20</start>
<end>28</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">21E52CCC561AF439835226A2F6D3F5882F59EC40</identifier>
<identifier type="DOI">10.1191/0959683605hl780rp</identifier>
<identifier type="ArticleID">10.1191_0959683605hl780rp</identifier>
<recordInfo>
<recordContentSource>SAGE</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001523 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001523 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:21E52CCC561AF439835226A2F6D3F5882F59EC40
   |texte=   ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024