Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New data set of onset of annual snowmelt on Antarctic sea ice

Identifieur interne : 000E97 ( Istex/Corpus ); précédent : 000E96; suivant : 000E98

New data set of onset of annual snowmelt on Antarctic sea ice

Auteurs : Sascha Willmes ; Jörg Bareiss ; Christian Haas

Source :

RBID : ISTEX:3168A0EBC706E60841F211884D7C1F9C1E9E53B3

Abstract

The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation—a process known as the snowmelt‐albedo feedback—and thus strongly modifies the surface energy balance during summer [Curry et al., 1995]. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive‐microwave data [Anderson, 1997; Drobot and Anderson, 2001] revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates [Drobot and Anderson, 2001; Belchansky et al., 2004]. In the Antarctic, however, little effort has been made so far in detecting the length of the summer melt season on sea ice by means of satellite microwave data. This results from the fact that surface melting in the Antarctic differs significantly from corresponding processes in the Arctic [Nicolaus et al., 2006]. The hemispheric differences are supported by extensive field measurements [Massom et al., 2001; Haas et al., 2001 ] and find expression in a reversal of the general surface radar backscatter and brightness temperature (TB) tendencies during summer [Haas, 2001; Kern and Heygster, 2001] : In the Antarctic, sea ice backscatter increases and TB decreases when summer approaches, contrary to the Arctic. Hence, algorithms developed for Arctic sea ice are not applicable on its southern counterpart. As summer air temperatures in the Antarctic rarely rise above 0°C, classical surface melt ponds have never been observed to the extent they appear in the Arctic and the sea ice surface typically remains snow‐covered year‐round. Drinkwater and Liu [2000] investigate snowmelt on Antarctic sea ice based on a method that identifies a decrease in surface radar backscatter. However, they detect melt to be lasting for only some days and exclusively on first‐year ice. Presumably, the backscatter decrease they observe is due to flooding of the snow before the ice underneath finally deteriorates.

Url:
DOI: 10.1029/2007EO220002

Links to Exploration step

ISTEX:3168A0EBC706E60841F211884D7C1F9C1E9E53B3

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New data set of onset of annual snowmelt on Antarctic sea ice</title>
<author wicri:is="90%">
<name sortKey="Willmes, Sascha" sort="Willmes, Sascha" uniqKey="Willmes S" first="Sascha" last="Willmes">Sascha Willmes</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Bareiss, Jorg" sort="Bareiss, Jorg" uniqKey="Bareiss J" first="Jörg" last="Bareiss">Jörg Bareiss</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, University of Trier</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Haas, Christian" sort="Haas, Christian" uniqKey="Haas C" first="Christian" last="Haas">Christian Haas</name>
<affiliation>
<mods:affiliation>Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3168A0EBC706E60841F211884D7C1F9C1E9E53B3</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1029/2007EO220002</idno>
<idno type="url">https://api.istex.fr/document/3168A0EBC706E60841F211884D7C1F9C1E9E53B3/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E97</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">New data set of onset of annual snowmelt on Antarctic sea ice</title>
<author wicri:is="90%">
<name sortKey="Willmes, Sascha" sort="Willmes, Sascha" uniqKey="Willmes S" first="Sascha" last="Willmes">Sascha Willmes</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, University of Trier, Trier, Germany</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Bareiss, Jorg" sort="Bareiss, Jorg" uniqKey="Bareiss J" first="Jörg" last="Bareiss">Jörg Bareiss</name>
<affiliation>
<mods:affiliation>Department of Environmental Meteorology, University of Trier</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Haas, Christian" sort="Haas, Christian" uniqKey="Haas C" first="Christian" last="Haas">Christian Haas</name>
<affiliation>
<mods:affiliation>Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Eos, Transactions American Geophysical Union</title>
<title level="j" type="abbrev">Eos Trans. AGU</title>
<idno type="ISSN">0096-3941</idno>
<idno type="eISSN">2324-9250</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2007-05-29">2007-05-29</date>
<biblScope unit="volume">88</biblScope>
<biblScope unit="issue">22</biblScope>
<biblScope unit="page" from="237">237</biblScope>
<biblScope unit="page" to="241">241</biblScope>
</imprint>
<idno type="ISSN">0096-3941</idno>
</series>
<idno type="istex">3168A0EBC706E60841F211884D7C1F9C1E9E53B3</idno>
<idno type="DOI">10.1029/2007EO220002</idno>
<idno type="ArticleID">EOST15990</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0096-3941</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation—a process known as the snowmelt‐albedo feedback—and thus strongly modifies the surface energy balance during summer [Curry et al., 1995]. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive‐microwave data [Anderson, 1997; Drobot and Anderson, 2001] revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates [Drobot and Anderson, 2001; Belchansky et al., 2004]. In the Antarctic, however, little effort has been made so far in detecting the length of the summer melt season on sea ice by means of satellite microwave data. This results from the fact that surface melting in the Antarctic differs significantly from corresponding processes in the Arctic [Nicolaus et al., 2006]. The hemispheric differences are supported by extensive field measurements [Massom et al., 2001; Haas et al., 2001 ] and find expression in a reversal of the general surface radar backscatter and brightness temperature (TB) tendencies during summer [Haas, 2001; Kern and Heygster, 2001] : In the Antarctic, sea ice backscatter increases and TB decreases when summer approaches, contrary to the Arctic. Hence, algorithms developed for Arctic sea ice are not applicable on its southern counterpart. As summer air temperatures in the Antarctic rarely rise above 0°C, classical surface melt ponds have never been observed to the extent they appear in the Arctic and the sea ice surface typically remains snow‐covered year‐round. Drinkwater and Liu [2000] investigate snowmelt on Antarctic sea ice based on a method that identifies a decrease in surface radar backscatter. However, they detect melt to be lasting for only some days and exclusively on first‐year ice. Presumably, the backscatter decrease they observe is due to flooding of the snow before the ice underneath finally deteriorates.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Sascha Willmes</name>
<affiliations>
<json:string>Department of Environmental Meteorology, University of Trier, Trier, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jörg Bareiss</name>
<affiliations>
<json:string>Department of Environmental Meteorology, University of Trier</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christian Haas</name>
<affiliations>
<json:string>Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>EOST15990</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation—a process known as the snowmelt‐albedo feedback—and thus strongly modifies the surface energy balance during summer [Curry et al., 1995]. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive‐microwave data [Anderson, 1997; Drobot and Anderson, 2001] revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates [Drobot and Anderson, 2001; Belchansky et al., 2004]. In the Antarctic, however, little effort has been made so far in detecting the length of the summer melt season on sea ice by means of satellite microwave data. This results from the fact that surface melting in the Antarctic differs significantly from corresponding processes in the Arctic [Nicolaus et al., 2006]. The hemispheric differences are supported by extensive field measurements [Massom et al., 2001; Haas et al., 2001 ] and find expression in a reversal of the general surface radar backscatter and brightness temperature (TB) tendencies during summer [Haas, 2001; Kern and Heygster, 2001] : In the Antarctic, sea ice backscatter increases and TB decreases when summer approaches, contrary to the Arctic. Hence, algorithms developed for Arctic sea ice are not applicable on its southern counterpart. As summer air temperatures in the Antarctic rarely rise above 0°C, classical surface melt ponds have never been observed to the extent they appear in the Arctic and the sea ice surface typically remains snow‐covered year‐round. Drinkwater and Liu [2000] investigate snowmelt on Antarctic sea ice based on a method that identifies a decrease in surface radar backscatter. However, they detect melt to be lasting for only some days and exclusively on first‐year ice. Presumably, the backscatter decrease they observe is due to flooding of the snow before the ice underneath finally deteriorates.</abstract>
<qualityIndicators>
<score>5.499</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>584.16 x 791.04 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>2087</abstractCharCount>
<pdfWordCount>1999</pdfWordCount>
<pdfCharCount>8991</pdfCharCount>
<pdfPageCount>2</pdfPageCount>
<abstractWordCount>327</abstractWordCount>
</qualityIndicators>
<title>New data set of onset of annual snowmelt on Antarctic sea ice</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>M. Anderson</name>
</json:item>
</author>
<host>
<volume>25</volume>
<pages>
<last>388</last>
<first>382</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>Determination of melt‐onset date for Arctic sea‐ice regions using passive‐microwave data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>G. I. Belchansky</name>
</json:item>
<json:item>
<name>D. C. Douglas</name>
</json:item>
<json:item>
<name>I. N. Mordvintsev</name>
</json:item>
<json:item>
<name>N. G. Platonov</name>
</json:item>
</author>
<host>
<volume>92</volume>
<pages>
<last>39</last>
<first>21</first>
</pages>
<author></author>
<title>Remote Sens. Environ.</title>
</host>
<title>Estimating the time of melt onset and freeze onset over Arctic sea‐ice area using active and passive microwave data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. A. Curry</name>
</json:item>
<json:item>
<name>J. L. Schramn</name>
</json:item>
<json:item>
<name>E. E. Ebert</name>
</json:item>
</author>
<host>
<volume>9</volume>
<pages>
<last>247</last>
<first>240</first>
</pages>
<author></author>
<title>J. Clim.</title>
</host>
<title>On the ice albedo climate feedback mechanism</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. R. Drinkwater</name>
</json:item>
<json:item>
<name>X. Liu</name>
</json:item>
</author>
<host>
<volume>38</volume>
<pages>
<last>1842</last>
<first>1827</first>
</pages>
<issue>A</issue>
<author></author>
<title>IEEE Trans. Geosci. Remote Sens.</title>
</host>
<title>Seasonal to interannual variability in Antarctic sea‐ice surface melt</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. D. Drobot</name>
</json:item>
<json:item>
<name>M. R. Anderson</name>
</json:item>
</author>
<host>
<volume>106</volume>
<pages>
<last>24,049</last>
<first>24,033</first>
</pages>
<issue>D20</issue>
<author></author>
<title>J. Geophys. Res.</title>
</host>
<title>An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Haas</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>73</last>
<first>69</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>The seasonal cycle of ERS scatterometer signatures over perennial Antarctic sea ice and associated surface ice properties and processes</title>
</json:item>
<json:item>
<author>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>D. N. Thomas</name>
</json:item>
<json:item>
<name>J. Bareiss</name>
</json:item>
</author>
<host>
<volume>47</volume>
<pages>
<last>625</last>
<first>613</first>
</pages>
<issue>159</issue>
<author></author>
<title>J. Glaciol.</title>
</host>
<title>Surface properties and processes of perennial Antarctic sea ice in summer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>H. H. Hellmer</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>G. S. Dieckmann</name>
</json:item>
<json:item>
<name>M. Schroder</name>
</json:item>
</author>
<host>
<volume>87</volume>
<pages>
<first>173</first>
</pages>
<issue>18</issue>
<author></author>
<title>Eos Trans. AGU</title>
</host>
<title>Sea ice feedbacks observed in western Weddell Sea</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Kern</name>
</json:item>
<json:item>
<name>G. Heygster</name>
</json:item>
</author>
<host>
<volume>33</volume>
<pages>
<last>114</last>
<first>109</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>Sea‐ice concentration retrieval in the Antarctic based on the SSM/I 85.5 GHz polarization</title>
</json:item>
<json:item>
<author>
<json:item>
<name>R. A. Massom</name>
</json:item>
</author>
<host>
<volume>39</volume>
<pages>
<last>445</last>
<first>413</first>
</pages>
<issue>3</issue>
<author></author>
<title>Rev. Geophys.</title>
</host>
<title>Snow on Antarctic sea ice</title>
</json:item>
<json:item>
<author>
<json:item>
<name>M. Nicolaus</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>J. Bareiss</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>153</last>
<first>147</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>Differences of snow melting on Arctic and Antarctic sea ice during spring and summer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. Willmes</name>
</json:item>
<json:item>
<name>J. Bareiss</name>
</json:item>
<json:item>
<name>C. Haas</name>
</json:item>
<json:item>
<name>M. Nicolaus</name>
</json:item>
</author>
<host>
<volume>44</volume>
<pages>
<last>302</last>
<first>297</first>
</pages>
<author></author>
<title>Ann. Glaciol.</title>
</host>
<title>The importance of diurnal processes for the seasonal cycle of sea‐ice microwave brightness temperatures during summer in the Weddell Sea</title>
</json:item>
</refBibs>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>88</volume>
<publisherId>
<json:string>EOST</json:string>
</publisherId>
<pages>
<total>5</total>
<last>241</last>
<first>237</first>
</pages>
<issn>
<json:string>0096-3941</json:string>
</issn>
<issue>22</issue>
<subject>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Snowmelt</value>
</json:item>
<json:item>
<value>Sea ice</value>
</json:item>
<json:item>
<value>Remote sensing</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2324-9250</json:string>
</eissn>
<title>Eos, Transactions American Geophysical Union</title>
<doi>
<json:string>10.1002/(ISSN)2324-9250</json:string>
</doi>
</host>
<categories>
<wos></wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1029/2007EO220002</json:string>
</doi>
<id>3168A0EBC706E60841F211884D7C1F9C1E9E53B3</id>
<score>1.492867</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3168A0EBC706E60841F211884D7C1F9C1E9E53B3/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3168A0EBC706E60841F211884D7C1F9C1E9E53B3/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3168A0EBC706E60841F211884D7C1F9C1E9E53B3/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">New data set of onset of annual snowmelt on Antarctic sea ice</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>©2007. American Geophysical Union. All Rights Reserved.</p>
</availability>
<date>2007</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">New data set of onset of annual snowmelt on Antarctic sea ice</title>
<author xml:id="author-1">
<persName>
<forename type="first">Sascha</forename>
<surname>Willmes</surname>
</persName>
<affiliation>Department of Environmental Meteorology, University of Trier, Trier, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Jörg</forename>
<surname>Bareiss</surname>
</persName>
<affiliation>Department of Environmental Meteorology, University of Trier</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Christian</forename>
<surname>Haas</surname>
</persName>
<affiliation>Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Eos, Transactions American Geophysical Union</title>
<title level="j" type="abbrev">Eos Trans. AGU</title>
<idno type="pISSN">0096-3941</idno>
<idno type="eISSN">2324-9250</idno>
<idno type="DOI">10.1002/(ISSN)2324-9250</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2007-05-29"></date>
<biblScope unit="volume">88</biblScope>
<biblScope unit="issue">22</biblScope>
<biblScope unit="page" from="237">237</biblScope>
<biblScope unit="page" to="241">241</biblScope>
</imprint>
</monogr>
<idno type="istex">3168A0EBC706E60841F211884D7C1F9C1E9E53B3</idno>
<idno type="DOI">10.1029/2007EO220002</idno>
<idno type="ArticleID">EOST15990</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2007</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation—a process known as the snowmelt‐albedo feedback—and thus strongly modifies the surface energy balance during summer [Curry et al., 1995]. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive‐microwave data [Anderson, 1997; Drobot and Anderson, 2001] revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates [Drobot and Anderson, 2001; Belchansky et al., 2004]. In the Antarctic, however, little effort has been made so far in detecting the length of the summer melt season on sea ice by means of satellite microwave data. This results from the fact that surface melting in the Antarctic differs significantly from corresponding processes in the Arctic [Nicolaus et al., 2006]. The hemispheric differences are supported by extensive field measurements [Massom et al., 2001; Haas et al., 2001 ] and find expression in a reversal of the general surface radar backscatter and brightness temperature (TB) tendencies during summer [Haas, 2001; Kern and Heygster, 2001] : In the Antarctic, sea ice backscatter increases and TB decreases when summer approaches, contrary to the Arctic. Hence, algorithms developed for Arctic sea ice are not applicable on its southern counterpart. As summer air temperatures in the Antarctic rarely rise above 0°C, classical surface melt ponds have never been observed to the extent they appear in the Arctic and the sea ice surface typically remains snow‐covered year‐round. Drinkwater and Liu [2000] investigate snowmelt on Antarctic sea ice based on a method that identifies a decrease in surface radar backscatter. However, they detect melt to be lasting for only some days and exclusively on first‐year ice. Presumably, the backscatter decrease they observe is due to flooding of the snow before the ice underneath finally deteriorates.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Snowmelt</term>
</item>
<item>
<term>Sea ice</term>
</item>
<item>
<term>Remote sensing</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2007-05-29">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3168A0EBC706E60841F211884D7C1F9C1E9E53B3/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="eost15990">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2324-9250</doi>
<issn type="print">0096-3941</issn>
<issn type="electronic">2324-9250</issn>
<idGroup>
<id type="product" value="EOST"></id>
<id type="coden" value="ETAGCT"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="EOS, TRANSACTIONS AMERICAN GEOPHYSICAL UNION">Eos, Transactions American Geophysical Union</title>
<title type="short">Eos Trans. AGU</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="220">
<doi>10.1002/eost.v88.22</doi>
<numberingGroup>
<numbering type="journalVolume" number="88">88</numbering>
<numbering type="journalIssue">22</numbering>
</numberingGroup>
<coverDate startDate="2007-05-29">29 May 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="30" status="forIssue">
<doi>10.1029/2007EO220002</doi>
<idGroup>
<id type="unit" value="EOST15990"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="5"></count>
</countGroup>
<copyright ownership="thirdParty">©2007. American Geophysical Union. All Rights Reserved.</copyright>
<eventGroup>
<event type="firstOnline" date="2007-06-26"></event>
<event type="publishedOnlineFinalForm" date="2007-06-26"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2012-12-11"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">237</numbering>
<numbering type="pageLast">241</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0740">Snowmelt</subject>
<subject href="http://psi.agu.org/taxonomy5/0750">Sea ice</subject>
<subject href="http://psi.agu.org/taxonomy5/0758">Remote sensing</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="eost15990-cit-0000" type="self">
<author>
<familyName>Willmes</familyName>
,
<givenNames>S.</givenNames>
</author>
,
<author>
<givenNames>J.</givenNames>
<familyName>Bareiss</familyName>
</author>
, and
<author>
<givenNames>C.</givenNames>
<familyName>Haas</familyName>
</author>
(
<pubYear year="2007">2007</pubYear>
),
<articleTitle>New data set of onset of annual snowmelt on Antarctic sea ice</articleTitle>
,
<journalTitle>Eos Trans. AGU</journalTitle>
,
<vol>88</vol>
(
<issue>22</issue>
),
<pageFirst>237</pageFirst>
<pageLast>241</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/2007EO220002">10.1029/2007EO220002</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:EOST.EOST15990.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">New data set of onset of annual snowmelt on Antarctic sea ice</title>
<title type="shortAuthors">Willmes ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="eost15990-cr-0001" affiliationRef="#eost15990-aff-0001">
<personName>
<givenNames>Sascha</givenNames>
<familyName>Willmes</familyName>
</personName>
</creator>
<creator xml:id="eost15990-cr-0002" affiliationRef="#eost15990-aff-0002">
<personName>
<givenNames>Jörg</givenNames>
<familyName>Bareiss</familyName>
</personName>
</creator>
<creator xml:id="eost15990-cr-0003" affiliationRef="#eost15990-aff-0003">
<personName>
<givenNames>Christian</givenNames>
<familyName>Haas</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="eost15990-aff-0001" type="organization">
<unparsedAffiliation>Department of Environmental Meteorology, University of Trier, Trier, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="eost15990-aff-0002" type="organization">
<unparsedAffiliation>Department of Environmental Meteorology, University of Trier</unparsedAffiliation>
</affiliation>
<affiliation xml:id="eost15990-aff-0003" type="organization">
<unparsedAffiliation>Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="eost15990-para-0001">The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation—a process known as the snowmelt‐albedo feedback—and thus strongly modifies the surface energy balance during summer [
<i>Curry et al.</i>
, 1995]. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive‐microwave data [
<i>Anderson</i>
, 1997;
<i>Drobot and Anderson</i>
, 2001] revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates [
<i>Drobot and Anderson</i>
, 2001;
<i>Belchansky et al.</i>
, 2004].</p>
<p xml:id="eost15990-para-0002">In the Antarctic, however, little effort has been made so far in detecting the length of the summer melt season on sea ice by means of satellite microwave data. This results from the fact that surface melting in the Antarctic differs significantly from corresponding processes in the Arctic [
<i>Nicolaus et al.</i>
, 2006]. The hemispheric differences are supported by extensive field measurements [
<i>Massom et al.</i>
, 2001;
<i>Haas et al.</i>
, 2001 ] and find expression in a reversal of the general surface radar backscatter and brightness temperature (T
<i>
<sub>B</sub>
</i>
) tendencies during summer [
<i>Haas</i>
, 2001;
<i>Kern and Heygster</i>
, 2001] : In the Antarctic, sea ice backscatter increases and
<i>T
<sub>B</sub>
</i>
decreases when summer approaches, contrary to the Arctic. Hence, algorithms developed for Arctic sea ice are not applicable on its southern counterpart. As summer air temperatures in the Antarctic rarely rise above 0°C, classical surface melt ponds have never been observed to the extent they appear in the Arctic and the sea ice surface typically remains snow‐covered year‐round.
<i>Drinkwater and Liu</i>
[2000] investigate snowmelt on Antarctic sea ice based on a method that identifies a decrease in surface radar backscatter. However, they detect melt to be lasting for only some days and exclusively on first‐year ice. Presumably, the backscatter decrease they observe is due to flooding of the snow before the ice underneath finally deteriorates.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>New data set of onset of annual snowmelt on Antarctic sea ice</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>New data set of onset of annual snowmelt on Antarctic sea ice</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sascha</namePart>
<namePart type="family">Willmes</namePart>
<affiliation>Department of Environmental Meteorology, University of Trier, Trier, Germany</affiliation>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Bareiss</namePart>
<affiliation>Department of Environmental Meteorology, University of Trier</affiliation>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Haas</namePart>
<affiliation>Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2007-05-29</dateIssued>
<edition>Willmes, S., J. Bareiss, and C. Haas (2007), New data set of onset of annual snowmelt on Antarctic sea ice, Eos Trans. AGU, 88(22), 237–241, doi:10.1029/2007EO220002.</edition>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation—a process known as the snowmelt‐albedo feedback—and thus strongly modifies the surface energy balance during summer [Curry et al., 1995]. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive‐microwave data [Anderson, 1997; Drobot and Anderson, 2001] revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates [Drobot and Anderson, 2001; Belchansky et al., 2004]. In the Antarctic, however, little effort has been made so far in detecting the length of the summer melt season on sea ice by means of satellite microwave data. This results from the fact that surface melting in the Antarctic differs significantly from corresponding processes in the Arctic [Nicolaus et al., 2006]. The hemispheric differences are supported by extensive field measurements [Massom et al., 2001; Haas et al., 2001 ] and find expression in a reversal of the general surface radar backscatter and brightness temperature (TB) tendencies during summer [Haas, 2001; Kern and Heygster, 2001] : In the Antarctic, sea ice backscatter increases and TB decreases when summer approaches, contrary to the Arctic. Hence, algorithms developed for Arctic sea ice are not applicable on its southern counterpart. As summer air temperatures in the Antarctic rarely rise above 0°C, classical surface melt ponds have never been observed to the extent they appear in the Arctic and the sea ice surface typically remains snow‐covered year‐round. Drinkwater and Liu [2000] investigate snowmelt on Antarctic sea ice based on a method that identifies a decrease in surface radar backscatter. However, they detect melt to be lasting for only some days and exclusively on first‐year ice. Presumably, the backscatter decrease they observe is due to flooding of the snow before the ice underneath finally deteriorates.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Eos, Transactions American Geophysical Union</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Eos Trans. AGU</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0740">Snowmelt</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0750">Sea ice</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0758">Remote sensing</topic>
</subject>
<identifier type="ISSN">0096-3941</identifier>
<identifier type="eISSN">2324-9250</identifier>
<identifier type="DOI">10.1002/(ISSN)2324-9250</identifier>
<identifier type="CODEN">ETAGCT</identifier>
<identifier type="PublisherID">EOST</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>88</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>237</start>
<end>241</end>
<total>5</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3168A0EBC706E60841F211884D7C1F9C1E9E53B3</identifier>
<identifier type="DOI">10.1029/2007EO220002</identifier>
<identifier type="ArticleID">EOST15990</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2007. American Geophysical Union. All Rights Reserved.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3168A0EBC706E60841F211884D7C1F9C1E9E53B3
   |texte=   New data set of onset of annual snowmelt on Antarctic sea ice
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024