Serveur d'exploration sur l'Université de Trèves

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expeditions to the Russian Arctic to Survey Black Carbon in Snow

Identifieur interne : 000A42 ( Istex/Corpus ); précédent : 000A41; suivant : 000A43

Expeditions to the Russian Arctic to Survey Black Carbon in Snow

Auteurs : Thomas C. Grenfell ; Stephen G. Warren ; Vladimir F. Radionov ; Vladimir N. Makarov ; Sergei A. Zimov

Source :

RBID : ISTEX:182D1EEF8928CDFC68EF9426F1E5D11849821B71

Abstract

Snow is the most reflective natural surface on Earth, with an albedo (the ratio of reflected to incident light) typically between 70% and 85%. Because the albedo of snow is so high, it can be reduced by small amounts of dark impurities. Black carbon (BC) in amounts of a few tens of parts per billion (ppb) can reduce the albedo by a few percent depending on the snow grain size [Warren and Wiscombe, 1985; Clarke and Noone, 1985]. An albedo reduction of a few percent is not detectable by eye and is below the accuracy of satellite observations. Nonetheless, such a reduction is significant for climate. For a typical incident solar flux of 240 watts per square meter at the snow surface in the Arctic during spring and summer, an albedo change of 1% modifies the absorbed energy flux by an amount comparable to current anthropogenic greenhouse gas forcing. As a result, higher levels of BC could cause the snow to melt sooner in the spring, uncovering darker underlying surfaces (tundra and sea ice) and resulting in a positive feedback on climate [Hansen and Nazarenko, 2004].

Url:
DOI: 10.1029/2009EO430002

Links to Exploration step

ISTEX:182D1EEF8928CDFC68EF9426F1E5D11849821B71

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
<author wicri:is="90%">
<name sortKey="Grenfell, Thomas C" sort="Grenfell, Thomas C" uniqKey="Grenfell T" first="Thomas C." last="Grenfell">Thomas C. Grenfell</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Warren, Stephen G" sort="Warren, Stephen G" uniqKey="Warren S" first="Stephen G." last="Warren">Stephen G. Warren</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Radionov, Vladimir F" sort="Radionov, Vladimir F" uniqKey="Radionov V" first="Vladimir F." last="Radionov">Vladimir F. Radionov</name>
<affiliation>
<mods:affiliation>Arctic and Antarctic Research Institute, St. Petersburg, Russia</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Makarov, Vladimir N" sort="Makarov, Vladimir N" uniqKey="Makarov V" first="Vladimir N." last="Makarov">Vladimir N. Makarov</name>
<affiliation>
<mods:affiliation>Permafrost Institute of the Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Zimov, Sergei A" sort="Zimov, Sergei A" uniqKey="Zimov S" first="Sergei A." last="Zimov">Sergei A. Zimov</name>
<affiliation>
<mods:affiliation>North-East Scientific Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskiy, Russia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:182D1EEF8928CDFC68EF9426F1E5D11849821B71</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1029/2009EO430002</idno>
<idno type="url">https://api.istex.fr/document/182D1EEF8928CDFC68EF9426F1E5D11849821B71/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A42</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
<author wicri:is="90%">
<name sortKey="Grenfell, Thomas C" sort="Grenfell, Thomas C" uniqKey="Grenfell T" first="Thomas C." last="Grenfell">Thomas C. Grenfell</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Warren, Stephen G" sort="Warren, Stephen G" uniqKey="Warren S" first="Stephen G." last="Warren">Stephen G. Warren</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Radionov, Vladimir F" sort="Radionov, Vladimir F" uniqKey="Radionov V" first="Vladimir F." last="Radionov">Vladimir F. Radionov</name>
<affiliation>
<mods:affiliation>Arctic and Antarctic Research Institute, St. Petersburg, Russia</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Makarov, Vladimir N" sort="Makarov, Vladimir N" uniqKey="Makarov V" first="Vladimir N." last="Makarov">Vladimir N. Makarov</name>
<affiliation>
<mods:affiliation>Permafrost Institute of the Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Zimov, Sergei A" sort="Zimov, Sergei A" uniqKey="Zimov S" first="Sergei A." last="Zimov">Sergei A. Zimov</name>
<affiliation>
<mods:affiliation>North-East Scientific Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskiy, Russia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Eos, Transactions American Geophysical Union</title>
<title level="j" type="abbrev">Eos Trans. AGU</title>
<idno type="ISSN">0096-3941</idno>
<idno type="eISSN">2324-9250</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2009-10-27">2009-10-27</date>
<biblScope unit="volume">90</biblScope>
<biblScope unit="issue">43</biblScope>
<biblScope unit="page" from="386">386</biblScope>
<biblScope unit="page" to="387">387</biblScope>
</imprint>
<idno type="ISSN">0096-3941</idno>
</series>
<idno type="istex">182D1EEF8928CDFC68EF9426F1E5D11849821B71</idno>
<idno type="DOI">10.1029/2009EO430002</idno>
<idno type="ArticleID">EOST16979</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0096-3941</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Snow is the most reflective natural surface on Earth, with an albedo (the ratio of reflected to incident light) typically between 70% and 85%. Because the albedo of snow is so high, it can be reduced by small amounts of dark impurities. Black carbon (BC) in amounts of a few tens of parts per billion (ppb) can reduce the albedo by a few percent depending on the snow grain size [Warren and Wiscombe, 1985; Clarke and Noone, 1985]. An albedo reduction of a few percent is not detectable by eye and is below the accuracy of satellite observations. Nonetheless, such a reduction is significant for climate. For a typical incident solar flux of 240 watts per square meter at the snow surface in the Arctic during spring and summer, an albedo change of 1% modifies the absorbed energy flux by an amount comparable to current anthropogenic greenhouse gas forcing. As a result, higher levels of BC could cause the snow to melt sooner in the spring, uncovering darker underlying surfaces (tundra and sea ice) and resulting in a positive feedback on climate [Hansen and Nazarenko, 2004].</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Thomas C. Grenfell</name>
<affiliations>
<json:string>Department of Atmospheric Sciences, University of Washington, Seattle</json:string>
</affiliations>
</json:item>
<json:item>
<name>Stephen G. Warren</name>
<affiliations>
<json:string>Department of Atmospheric Sciences, University of Washington, Seattle</json:string>
</affiliations>
</json:item>
<json:item>
<name>Vladimir F. Radionov</name>
<affiliations>
<json:string>Arctic and Antarctic Research Institute, St. Petersburg, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Vladimir N. Makarov</name>
<affiliations>
<json:string>Permafrost Institute of the Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sergei A. Zimov</name>
<affiliations>
<json:string>North-East Scientific Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskiy, Russia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>northern Russia</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>soot</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>snow</value>
</json:item>
</subject>
<articleId>
<json:string>EOST16979</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>shortCommunication</json:string>
</originalGenre>
<abstract>Snow is the most reflective natural surface on Earth, with an albedo (the ratio of reflected to incident light) typically between 70% and 85%. Because the albedo of snow is so high, it can be reduced by small amounts of dark impurities. Black carbon (BC) in amounts of a few tens of parts per billion (ppb) can reduce the albedo by a few percent depending on the snow grain size [Warren and Wiscombe, 1985; Clarke and Noone, 1985]. An albedo reduction of a few percent is not detectable by eye and is below the accuracy of satellite observations. Nonetheless, such a reduction is significant for climate. For a typical incident solar flux of 240 watts per square meter at the snow surface in the Arctic during spring and summer, an albedo change of 1% modifies the absorbed energy flux by an amount comparable to current anthropogenic greenhouse gas forcing. As a result, higher levels of BC could cause the snow to melt sooner in the spring, uncovering darker underlying surfaces (tundra and sea ice) and resulting in a positive feedback on climate [Hansen and Nazarenko, 2004].</abstract>
<qualityIndicators>
<score>4.212</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1079</abstractCharCount>
<pdfWordCount>1480</pdfWordCount>
<pdfCharCount>9491</pdfCharCount>
<pdfPageCount>2</pdfPageCount>
<abstractWordCount>186</abstractWordCount>
</qualityIndicators>
<title>Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
<refBibs>
<json:item>
<author>
<json:item>
<name>T. C. Bond</name>
</json:item>
<json:item>
<name>R. W. Bergstrom</name>
</json:item>
</author>
<host>
<volume>40</volume>
<pages>
<last>67</last>
<first>27</first>
</pages>
<author></author>
<title>Aerosol Sci. Technol.</title>
</host>
<title>Light absorption by carbonaceous particles: An investigative review</title>
</json:item>
<json:item>
<author>
<json:item>
<name>A. D. Clarke</name>
</json:item>
<json:item>
<name>K. J. Noone</name>
</json:item>
</author>
<host>
<volume>19</volume>
<pages>
<last>2053</last>
<first>2045</first>
</pages>
<author></author>
<title>Atmos. Environ.</title>
</host>
<title>Soot in the Arctic snowpack: A cause for perturbations in radiative transfer</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. Hansen</name>
</json:item>
<json:item>
<name>L. Nazarenko</name>
</json:item>
</author>
<host>
<volume>101</volume>
<pages>
<last>428</last>
<first>423</first>
</pages>
<author></author>
<title>Proc. Natl. Acad. Sci. U. S. A.</title>
</host>
<title>Soot climate forcing via snow and ice albedos</title>
</json:item>
<json:item>
<author>
<json:item>
<name>D. A. Hegg</name>
</json:item>
<json:item>
<name>S. G. Warren</name>
</json:item>
<json:item>
<name>T. C. Grenfell</name>
</json:item>
<json:item>
<name>S. J. Doherty</name>
</json:item>
<json:item>
<name>T. V. Larson</name>
</json:item>
<json:item>
<name>A. D. Clarke</name>
</json:item>
</author>
<host>
<volume>43</volume>
<pages>
<last>4021</last>
<first>4016</first>
</pages>
<issue>11</issue>
<author></author>
<title>Environ. Sci. Technol.</title>
</host>
<title>Source attribution of black carbon in Arctic snow</title>
</json:item>
<json:item>
<author>
<json:item>
<name>J. R. McConnell</name>
</json:item>
<json:item>
<name>R. Edwards</name>
</json:item>
<json:item>
<name>G. L. Kok</name>
</json:item>
<json:item>
<name>M. G. Flanner</name>
</json:item>
<json:item>
<name>C. S. Zender</name>
</json:item>
<json:item>
<name>E. S. Saltzman</name>
</json:item>
<json:item>
<name>J. R. Banta</name>
</json:item>
<json:item>
<name>D. R. Pasteris</name>
</json:item>
<json:item>
<name>M. M. Carter</name>
</json:item>
<json:item>
<name>J. D. W. Kahl</name>
</json:item>
</author>
<host>
<volume>317</volume>
<pages>
<last>1384</last>
<first>1381</first>
</pages>
<author></author>
<title>Science</title>
</host>
<title>20th‐century industrial black carbon emissions altered Arctic climate forcing</title>
</json:item>
<json:item>
<author>
<json:item>
<name>P. K. Quinn</name>
</json:item>
<json:item>
<name>G. Shaw</name>
</json:item>
<json:item>
<name>E. Andrews</name>
</json:item>
<json:item>
<name>E. G. Dutton</name>
</json:item>
<json:item>
<name>T. Ruoho‐Airola</name>
</json:item>
<json:item>
<name>S. L. Gong</name>
</json:item>
</author>
<host>
<volume>59</volume>
<pages>
<last>114</last>
<first>99</first>
</pages>
<author></author>
<title>Tellus, Ser. B</title>
</host>
<title>Arctic haze: Current trends and knowledge gaps</title>
</json:item>
<json:item>
<author>
<json:item>
<name>S. G. Warren</name>
</json:item>
<json:item>
<name>W. J. Wiscombe</name>
</json:item>
</author>
<host>
<volume>313</volume>
<pages>
<last>470</last>
<first>467</first>
</pages>
<author></author>
<title>Nature</title>
</host>
<title>Dirty snow after nuclear war</title>
</json:item>
</refBibs>
<genre>
<json:string>brief-communication</json:string>
</genre>
<host>
<volume>90</volume>
<publisherId>
<json:string>EOST</json:string>
</publisherId>
<pages>
<total>2</total>
<last>387</last>
<first>386</first>
</pages>
<issn>
<json:string>0096-3941</json:string>
</issn>
<issue>43</issue>
<subject>
<json:item>
<value>CRYOSPHERE</value>
</json:item>
<json:item>
<value>Snow</value>
</json:item>
<json:item>
<value>Contaminants</value>
</json:item>
<json:item>
<value>Distribution</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2324-9250</json:string>
</eissn>
<title>Eos, Transactions American Geophysical Union</title>
<doi>
<json:string>10.1002/(ISSN)2324-9250</json:string>
</doi>
</host>
<categories>
<wos></wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>earth & environmental sciences</json:string>
<json:string>meteorology & atmospheric sciences</json:string>
</scienceMetrix>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1029/2009EO430002</json:string>
</doi>
<id>182D1EEF8928CDFC68EF9426F1E5D11849821B71</id>
<score>0.039139073</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/182D1EEF8928CDFC68EF9426F1E5D11849821B71/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/182D1EEF8928CDFC68EF9426F1E5D11849821B71/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/182D1EEF8928CDFC68EF9426F1E5D11849821B71/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>©2009. American Geophysical Union. All Rights Reserved.</p>
</availability>
<date>2009</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
<author xml:id="author-1">
<persName>
<forename type="first">Thomas C.</forename>
<surname>Grenfell</surname>
</persName>
<affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Stephen G.</forename>
<surname>Warren</surname>
</persName>
<affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Vladimir F.</forename>
<surname>Radionov</surname>
</persName>
<affiliation>Arctic and Antarctic Research Institute, St. Petersburg, Russia</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Vladimir N.</forename>
<surname>Makarov</surname>
</persName>
<affiliation>Permafrost Institute of the Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Sergei A.</forename>
<surname>Zimov</surname>
</persName>
<affiliation>North-East Scientific Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskiy, Russia</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Eos, Transactions American Geophysical Union</title>
<title level="j" type="abbrev">Eos Trans. AGU</title>
<idno type="pISSN">0096-3941</idno>
<idno type="eISSN">2324-9250</idno>
<idno type="DOI">10.1002/(ISSN)2324-9250</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2009-10-27"></date>
<biblScope unit="volume">90</biblScope>
<biblScope unit="issue">43</biblScope>
<biblScope unit="page" from="386">386</biblScope>
<biblScope unit="page" to="387">387</biblScope>
</imprint>
</monogr>
<idno type="istex">182D1EEF8928CDFC68EF9426F1E5D11849821B71</idno>
<idno type="DOI">10.1029/2009EO430002</idno>
<idno type="ArticleID">EOST16979</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Snow is the most reflective natural surface on Earth, with an albedo (the ratio of reflected to incident light) typically between 70% and 85%. Because the albedo of snow is so high, it can be reduced by small amounts of dark impurities. Black carbon (BC) in amounts of a few tens of parts per billion (ppb) can reduce the albedo by a few percent depending on the snow grain size [Warren and Wiscombe, 1985; Clarke and Noone, 1985]. An albedo reduction of a few percent is not detectable by eye and is below the accuracy of satellite observations. Nonetheless, such a reduction is significant for climate. For a typical incident solar flux of 240 watts per square meter at the snow surface in the Arctic during spring and summer, an albedo change of 1% modifies the absorbed energy flux by an amount comparable to current anthropogenic greenhouse gas forcing. As a result, higher levels of BC could cause the snow to melt sooner in the spring, uncovering darker underlying surfaces (tundra and sea ice) and resulting in a positive feedback on climate [Hansen and Nazarenko, 2004].</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>northern Russia</term>
</item>
<item>
<term>soot</term>
</item>
<item>
<term>snow</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>CRYOSPHERE</term>
</item>
<item>
<term>Snow</term>
</item>
<item>
<term>Contaminants</term>
</item>
<item>
<term>Distribution</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-10-27">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/182D1EEF8928CDFC68EF9426F1E5D11849821B71/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="eost16979">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2324-9250</doi>
<issn type="print">0096-3941</issn>
<issn type="electronic">2324-9250</issn>
<idGroup>
<id type="product" value="EOST"></id>
<id type="coden" value="ETAGCT"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="EOS, TRANSACTIONS AMERICAN GEOPHYSICAL UNION">Eos, Transactions American Geophysical Union</title>
<title type="short">Eos Trans. AGU</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="430">
<doi>10.1002/eost.v90.43</doi>
<numberingGroup>
<numbering type="journalVolume" number="90">90</numbering>
<numbering type="journalIssue">43</numbering>
</numberingGroup>
<coverDate startDate="2009-10-27">27 October 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="shortCommunication" position="30" status="forIssue">
<doi>10.1029/2009EO430002</doi>
<idGroup>
<id type="unit" value="EOST16979"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="2"></count>
</countGroup>
<copyright ownership="thirdParty">©2009. American Geophysical Union. All Rights Reserved.</copyright>
<eventGroup>
<event type="firstOnline" date="2011-06-03"></event>
<event type="publishedOnlineFinalForm" date="2011-06-03"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2" date="2012-11-12"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">386</numbering>
<numbering type="pageLast">387</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0736">Snow</subject>
<subject href="http://psi.agu.org/taxonomy5/0792">Contaminants</subject>
<subject href="http://psi.agu.org/taxonomy5/0772">Distribution</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="eost16979-cit-0000" type="self">
<author>
<familyName>Grenfell</familyName>
,
<givenNames>T. C.</givenNames>
</author>
,
<author>
<givenNames>S. G.</givenNames>
<familyName>Warren</familyName>
</author>
,
<author>
<givenNames>V. F.</givenNames>
<familyName>Radionov</familyName>
</author>
,
<author>
<givenNames>V. N.</givenNames>
<familyName>Makarov</familyName>
</author>
, and
<author>
<givenNames>S. A.</givenNames>
<familyName>Zimov</familyName>
</author>
(
<pubYear year="2009">2009</pubYear>
),
<articleTitle>Expeditions to the Russian Arctic to Survey Black Carbon in Snow</articleTitle>
,
<journalTitle>Eos Trans. AGU</journalTitle>
,
<vol>90</vol>
(
<issue>43</issue>
),
<pageFirst>386</pageFirst>
<pageLast>387</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/2009EO430002">10.1029/2009EO430002</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:EOST.EOST16979.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
<title type="shortAuthors">Grenfell ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="eost16979-cr-0001" affiliationRef="#eost16979-aff-0001">
<personName>
<givenNames>Thomas C.</givenNames>
<familyName>Grenfell</familyName>
</personName>
</creator>
<creator xml:id="eost16979-cr-0002" affiliationRef="#eost16979-aff-0001">
<personName>
<givenNames>Stephen G.</givenNames>
<familyName>Warren</familyName>
</personName>
</creator>
<creator xml:id="eost16979-cr-0003" affiliationRef="#eost16979-aff-0002">
<personName>
<givenNames>Vladimir F.</givenNames>
<familyName>Radionov</familyName>
</personName>
</creator>
<creator xml:id="eost16979-cr-0004" affiliationRef="#eost16979-aff-0003">
<personName>
<givenNames>Vladimir N.</givenNames>
<familyName>Makarov</familyName>
</personName>
</creator>
<creator xml:id="eost16979-cr-0005" affiliationRef="#eost16979-aff-0004">
<personName>
<givenNames>Sergei A.</givenNames>
<familyName>Zimov</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="eost16979-aff-0001" type="organization">
<unparsedAffiliation>Department of Atmospheric Sciences, University of Washington, Seattle</unparsedAffiliation>
</affiliation>
<affiliation xml:id="eost16979-aff-0002" type="organization">
<unparsedAffiliation>Arctic and Antarctic Research Institute, St. Petersburg, Russia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="eost16979-aff-0003" type="organization">
<unparsedAffiliation>Permafrost Institute of the Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia</unparsedAffiliation>
</affiliation>
<affiliation xml:id="eost16979-aff-0004" type="organization">
<unparsedAffiliation>North-East Scientific Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskiy, Russia</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="eost16979-kwd-0001">northern Russia</keyword>
<keyword xml:id="eost16979-kwd-0002">soot</keyword>
<keyword xml:id="eost16979-kwd-0003">snow</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="eost16979-para-0001">Snow is the most reflective natural surface on Earth, with an albedo (the ratio of reflected to incident light) typically between 70% and 85%. Because the albedo of snow is so high, it can be reduced by small amounts of dark impurities. Black carbon (BC) in amounts of a few tens of parts per billion (ppb) can reduce the albedo by a few percent depending on the snow grain size [
<i>Warren and Wiscombe</i>
, 1985;
<i>Clarke and Noone</i>
, 1985].</p>
<p xml:id="eost16979-para-0002">An albedo reduction of a few percent is not detectable by eye and is below the accuracy of satellite observations. Nonetheless, such a reduction is significant for climate. For a typical incident solar flux of 240 watts per square meter at the snow surface in the Arctic during spring and summer, an albedo change of 1% modifies the absorbed energy flux by an amount comparable to current anthropogenic greenhouse gas forcing. As a result, higher levels of BC could cause the snow to melt sooner in the spring, uncovering darker underlying surfaces (tundra and sea ice) and resulting in a positive feedback on climate [
<i>Hansen and Nazarenko</i>
, 2004].</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Expeditions to the Russian Arctic to Survey Black Carbon in Snow</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas C.</namePart>
<namePart type="family">Grenfell</namePart>
<affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</affiliation>
</name>
<name type="personal">
<namePart type="given">Stephen G.</namePart>
<namePart type="family">Warren</namePart>
<affiliation>Department of Atmospheric Sciences, University of Washington, Seattle</affiliation>
</name>
<name type="personal">
<namePart type="given">Vladimir F.</namePart>
<namePart type="family">Radionov</namePart>
<affiliation>Arctic and Antarctic Research Institute, St. Petersburg, Russia</affiliation>
</name>
<name type="personal">
<namePart type="given">Vladimir N.</namePart>
<namePart type="family">Makarov</namePart>
<affiliation>Permafrost Institute of the Siberian Division of the Russian Academy of Sciences, Yakutsk, Russia</affiliation>
</name>
<name type="personal">
<namePart type="given">Sergei A.</namePart>
<namePart type="family">Zimov</namePart>
<affiliation>North-East Scientific Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskiy, Russia</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="brief-communication" displayLabel="shortCommunication"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2009-10-27</dateIssued>
<edition>Grenfell, T. C., S. G. Warren, V. F. Radionov, V. N. Makarov, and S. A. Zimov (2009), Expeditions to the Russian Arctic to Survey Black Carbon in Snow, Eos Trans. AGU, 90(43), 386–387, doi:10.1029/2009EO430002.</edition>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Snow is the most reflective natural surface on Earth, with an albedo (the ratio of reflected to incident light) typically between 70% and 85%. Because the albedo of snow is so high, it can be reduced by small amounts of dark impurities. Black carbon (BC) in amounts of a few tens of parts per billion (ppb) can reduce the albedo by a few percent depending on the snow grain size [Warren and Wiscombe, 1985; Clarke and Noone, 1985]. An albedo reduction of a few percent is not detectable by eye and is below the accuracy of satellite observations. Nonetheless, such a reduction is significant for climate. For a typical incident solar flux of 240 watts per square meter at the snow surface in the Arctic during spring and summer, an albedo change of 1% modifies the absorbed energy flux by an amount comparable to current anthropogenic greenhouse gas forcing. As a result, higher levels of BC could cause the snow to melt sooner in the spring, uncovering darker underlying surfaces (tundra and sea ice) and resulting in a positive feedback on climate [Hansen and Nazarenko, 2004].</abstract>
<subject>
<genre>keywords</genre>
<topic>northern Russia</topic>
<topic>soot</topic>
<topic>snow</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Eos, Transactions American Geophysical Union</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Eos Trans. AGU</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/0700">CRYOSPHERE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0736">Snow</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0792">Contaminants</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0772">Distribution</topic>
</subject>
<identifier type="ISSN">0096-3941</identifier>
<identifier type="eISSN">2324-9250</identifier>
<identifier type="DOI">10.1002/(ISSN)2324-9250</identifier>
<identifier type="CODEN">ETAGCT</identifier>
<identifier type="PublisherID">EOST</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>90</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>43</number>
</detail>
<extent unit="pages">
<start>386</start>
<end>387</end>
<total>2</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">182D1EEF8928CDFC68EF9426F1E5D11849821B71</identifier>
<identifier type="DOI">10.1029/2009EO430002</identifier>
<identifier type="ArticleID">EOST16979</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2009. American Geophysical Union. All Rights Reserved.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Rhénanie/explor/UnivTrevesV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000A42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Rhénanie
   |area=    UnivTrevesV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:182D1EEF8928CDFC68EF9426F1E5D11849821B71
   |texte=   Expeditions to the Russian Arctic to Survey Black Carbon in Snow
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Sat Jul 22 16:29:01 2017. Site generation: Wed Feb 28 14:55:37 2024