Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens.

Identifieur interne : 000392 ( PubMed/Corpus ); précédent : 000391; suivant : 000393

Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens.

Auteurs : Michaela Meyer ; Richard R. Fay ; Arthur N. Popper

Source :

RBID : pubmed:20400642

English descriptors

Abstract

Acipenser fulvescens, the lake sturgeon, belongs to one of the few extant non-teleost ray-finned (bony) fishes. The sturgeons (family Acipenseridae) have a phylogenetic history that dates back about 250 million years. The study reported here is the first investigation of peripheral coding strategies for spectral analysis in the auditory system in a non-teleost bony fish. We used a shaker system to simulate the particle motion component of sound during electrophysiological recordings of isolated single units from the eighth nerve innervating the saccule and lagena. Background activity and response characteristics of saccular and lagenar afferents (such as thresholds, response-level functions and temporal firing) resembled the ones found in teleosts. The distribution of best frequencies also resembled data in teleosts (except for Carassius auratus, goldfish) tested with the same stimulation method. The saccule and lagena in A. fulvescens contain otoconia, in contrast to the solid otoliths found in teleosts, however, this difference in otolith structure did not appear to affect threshold, frequency tuning, intensity- or temporal responses of auditory afferents. In general, the physiological characteristics common to A. fulvescens, teleosts and land vertebrates reflect important functions of the auditory system that may have been conserved throughout the evolution of vertebrates.

DOI: 10.1242/jeb.031757
PubMed: 20400642

Links to Exploration step

pubmed:20400642

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens.</title>
<author>
<name sortKey="Meyer, Michaela" sort="Meyer, Michaela" uniqKey="Meyer M" first="Michaela" last="Meyer">Michaela Meyer</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Maryland, College Park, MD 20742, USA. michaela_meyer@meei.harvard.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fay, Richard R" sort="Fay, Richard R" uniqKey="Fay R" first="Richard R" last="Fay">Richard R. Fay</name>
</author>
<author>
<name sortKey="Popper, Arthur N" sort="Popper, Arthur N" uniqKey="Popper A" first="Arthur N" last="Popper">Arthur N. Popper</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20400642</idno>
<idno type="pmid">20400642</idno>
<idno type="doi">10.1242/jeb.031757</idno>
<idno type="wicri:Area/PubMed/Corpus">000392</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000392</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens.</title>
<author>
<name sortKey="Meyer, Michaela" sort="Meyer, Michaela" uniqKey="Meyer M" first="Michaela" last="Meyer">Michaela Meyer</name>
<affiliation>
<nlm:affiliation>Department of Biology, University of Maryland, College Park, MD 20742, USA. michaela_meyer@meei.harvard.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fay, Richard R" sort="Fay, Richard R" uniqKey="Fay R" first="Richard R" last="Fay">Richard R. Fay</name>
</author>
<author>
<name sortKey="Popper, Arthur N" sort="Popper, Arthur N" uniqKey="Popper A" first="Arthur N" last="Popper">Arthur N. Popper</name>
</author>
</analytic>
<series>
<title level="j">The Journal of experimental biology</title>
<idno type="eISSN">1477-9145</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustic Stimulation</term>
<term>Animals</term>
<term>Fishes (physiology)</term>
<term>Hearing</term>
<term>Saccule and Utricle (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fishes</term>
<term>Saccule and Utricle</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acoustic Stimulation</term>
<term>Animals</term>
<term>Hearing</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Acipenser fulvescens, the lake sturgeon, belongs to one of the few extant non-teleost ray-finned (bony) fishes. The sturgeons (family Acipenseridae) have a phylogenetic history that dates back about 250 million years. The study reported here is the first investigation of peripheral coding strategies for spectral analysis in the auditory system in a non-teleost bony fish. We used a shaker system to simulate the particle motion component of sound during electrophysiological recordings of isolated single units from the eighth nerve innervating the saccule and lagena. Background activity and response characteristics of saccular and lagenar afferents (such as thresholds, response-level functions and temporal firing) resembled the ones found in teleosts. The distribution of best frequencies also resembled data in teleosts (except for Carassius auratus, goldfish) tested with the same stimulation method. The saccule and lagena in A. fulvescens contain otoconia, in contrast to the solid otoliths found in teleosts, however, this difference in otolith structure did not appear to affect threshold, frequency tuning, intensity- or temporal responses of auditory afferents. In general, the physiological characteristics common to A. fulvescens, teleosts and land vertebrates reflect important functions of the auditory system that may have been conserved throughout the evolution of vertebrates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20400642</PMID>
<DateCreated>
<Year>2010</Year>
<Month>04</Month>
<Day>19</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1477-9145</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>213</Volume>
<Issue>Pt 9</Issue>
<PubDate>
<Year>2010</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of experimental biology</Title>
<ISOAbbreviation>J. Exp. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens.</ArticleTitle>
<Pagination>
<MedlinePgn>1567-78</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1242/jeb.031757</ELocationID>
<Abstract>
<AbstractText>Acipenser fulvescens, the lake sturgeon, belongs to one of the few extant non-teleost ray-finned (bony) fishes. The sturgeons (family Acipenseridae) have a phylogenetic history that dates back about 250 million years. The study reported here is the first investigation of peripheral coding strategies for spectral analysis in the auditory system in a non-teleost bony fish. We used a shaker system to simulate the particle motion component of sound during electrophysiological recordings of isolated single units from the eighth nerve innervating the saccule and lagena. Background activity and response characteristics of saccular and lagenar afferents (such as thresholds, response-level functions and temporal firing) resembled the ones found in teleosts. The distribution of best frequencies also resembled data in teleosts (except for Carassius auratus, goldfish) tested with the same stimulation method. The saccule and lagena in A. fulvescens contain otoconia, in contrast to the solid otoliths found in teleosts, however, this difference in otolith structure did not appear to affect threshold, frequency tuning, intensity- or temporal responses of auditory afferents. In general, the physiological characteristics common to A. fulvescens, teleosts and land vertebrates reflect important functions of the auditory system that may have been conserved throughout the evolution of vertebrates.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Michaela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Maryland, College Park, MD 20742, USA. michaela_meyer@meei.harvard.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fay</LastName>
<ForeName>Richard R</ForeName>
<Initials>RR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Popper</LastName>
<ForeName>Arthur N</ForeName>
<Initials>AN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DC004664</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DC006215</GrantID>
<Acronym>DC</Acronym>
<Agency>NIDCD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Biol</MedlineTA>
<NlmUniqueID>0243705</NlmUniqueID>
<ISSNLinking>0022-0949</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2000 Nov;149(1-2):1-10</RefSource>
<PMID Version="1">11033242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Biol. 2007 Jan;210(Pt 1):75-81</RefSource>
<PMID Version="1">17170150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Sep;188(8):631-41</RefSource>
<PMID Version="1">12355239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Jul;189(7):527-43</RefSource>
<PMID Version="1">12827421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Dec;189(12):889-905</RefSource>
<PMID Version="1">14586545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1967 Nov;30(6):1377-403</RefSource>
<PMID Version="1">6066445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1969 Jul;32(4):613-36</RefSource>
<PMID Version="1">5810617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1975 Oct;58(4):905-9</RefSource>
<PMID Version="1">1194551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1978 Jan;63(1):136-46</RefSource>
<PMID Version="1">632405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1978 Sep 1;181(1):117-28</RefSource>
<PMID Version="1">681554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1978 Sep 28;275(5678):320-2</RefSource>
<PMID Version="1">692710</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pflugers Arch. 1980 Nov;388(2):123-8</RefSource>
<PMID Version="1">7192849</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1983 Apr;10(1):69-92</RefSource>
<PMID Version="1">6841279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1984 Aug 31;225(4665):951-4</RefSource>
<PMID Version="1">6474161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1985 Aug;54(2):370-84</RefSource>
<PMID Version="1">4031993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1986 Jun;79(6):1883-95</RefSource>
<PMID Version="1">3722599</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1989 Dec;62(6):1330-43</RefSource>
<PMID Version="1">2600628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1990 May;10(5):1570-82</RefSource>
<PMID Version="1">2332798</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1991 Jun;65(6):1580-97</RefSource>
<PMID Version="1">1875264</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1992 Mar 6;574(1-2):229-36</RefSource>
<PMID Version="1">1353401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1997 Sep;111(1-2):1-21</RefSource>
<PMID Version="1">9307307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1997 Nov;113(1-2):235-46</RefSource>
<PMID Version="1">9388002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A. 1998 Mar;182(3):307-18</RefSource>
<PMID Version="1">9528109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1998 Jun;120(1-2):69-76</RefSource>
<PMID Version="1">9667432</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 1998 Dec;126(1-2):47-57</RefSource>
<PMID Version="1">9872133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1999 Aug 23;411(2):212-38</RefSource>
<PMID Version="1">10404249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A. 1999 Jun;184(6):563-76</RefSource>
<PMID Version="1">10418153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Otolaryngol. 1951 Jun;38(3):262-73</RefSource>
<PMID Version="1">14856657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1949 Dec;110(3-4):392-415</RefSource>
<PMID Version="1">15406438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Nov;190(11):923-38</RefSource>
<PMID Version="1">15316732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comp Biochem Physiol A Mol Integr Physiol. 2005 Nov;142(3):286-96</RefSource>
<PMID Version="1">16183310</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jan;192(1):51-67</RefSource>
<PMID Version="1">16180037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Assoc Res Otolaryngol. 2000 Sep;1(2):120-8</RefSource>
<PMID Version="1">11545140</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000161" MajorTopicYN="N">Acoustic Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006309" MajorTopicYN="N">Hearing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012444" MajorTopicYN="N">Saccule and Utricle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC2856501</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20400642</ArticleId>
<ArticleId IdType="pii">213/9/1567</ArticleId>
<ArticleId IdType="doi">10.1242/jeb.031757</ArticleId>
<ArticleId IdType="pmc">PMC2856501</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000392 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000392 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20400642
   |texte=   Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20400642" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024