Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.

Identifieur interne : 000391 ( PubMed/Corpus ); précédent : 000390; suivant : 000392

The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.

Auteurs : Matthew D. Regan ; Colin J. Brauner

Source :

RBID : pubmed:20213180

English descriptors

Abstract

The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived teleosts studied to date. This is paralleled by the initial appearance of the choroid rete in bowfin, as well as a significant decrease in Hb buffer value and an increase in Bohr/Haldane effects, together suggesting bowfin as the most basal species capable of utilizing its Root effect to maximize O(2) delivery to the eye.

DOI: 10.1007/s00360-010-0450-5
PubMed: 20213180

Links to Exploration step

pubmed:20213180

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.</title>
<author>
<name sortKey="Regan, Matthew D" sort="Regan, Matthew D" uniqKey="Regan M" first="Matthew D" last="Regan">Matthew D. Regan</name>
<affiliation>
<nlm:affiliation>Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada. regan@zoology.ubc.ca</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brauner, Colin J" sort="Brauner, Colin J" uniqKey="Brauner C" first="Colin J" last="Brauner">Colin J. Brauner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20213180</idno>
<idno type="pmid">20213180</idno>
<idno type="doi">10.1007/s00360-010-0450-5</idno>
<idno type="wicri:Area/PubMed/Corpus">000391</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000391</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.</title>
<author>
<name sortKey="Regan, Matthew D" sort="Regan, Matthew D" uniqKey="Regan M" first="Matthew D" last="Regan">Matthew D. Regan</name>
<affiliation>
<nlm:affiliation>Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada. regan@zoology.ubc.ca</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brauner, Colin J" sort="Brauner, Colin J" uniqKey="Brauner C" first="Colin J" last="Brauner">Colin J. Brauner</name>
</author>
</analytic>
<series>
<title level="j">Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</title>
<idno type="eISSN">1432-136X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Erythrocytes (metabolism)</term>
<term>Evolution, Molecular</term>
<term>Fish Proteins (genetics)</term>
<term>Fish Proteins (physiology)</term>
<term>Fishes (blood)</term>
<term>Fishes (genetics)</term>
<term>Hemoglobins (analysis)</term>
<term>Hemoglobins (genetics)</term>
<term>Hemoglobins (physiology)</term>
<term>Hydrogen-Ion Concentration</term>
<term>Oxygen (blood)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Hemoglobins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fish Proteins</term>
<term>Hemoglobins</term>
</keywords>
<keywords scheme="MESH" qualifier="blood" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Fishes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Erythrocytes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Fish Proteins</term>
<term>Hemoglobins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Hydrogen-Ion Concentration</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived teleosts studied to date. This is paralleled by the initial appearance of the choroid rete in bowfin, as well as a significant decrease in Hb buffer value and an increase in Bohr/Haldane effects, together suggesting bowfin as the most basal species capable of utilizing its Root effect to maximize O(2) delivery to the eye.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20213180</PMID>
<DateCreated>
<Year>2010</Year>
<Month>05</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>08</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-136X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>180</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology</Title>
<ISOAbbreviation>J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.</ArticleTitle>
<Pagination>
<MedlinePgn>695-706</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00360-010-0450-5</ELocationID>
<Abstract>
<AbstractText>The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived teleosts studied to date. This is paralleled by the initial appearance of the choroid rete in bowfin, as well as a significant decrease in Hb buffer value and an increase in Bohr/Haldane effects, together suggesting bowfin as the most basal species capable of utilizing its Root effect to maximize O(2) delivery to the eye.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Regan</LastName>
<ForeName>Matthew D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada. regan@zoology.ubc.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brauner</LastName>
<ForeName>Colin J</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Comp Physiol B</MedlineTA>
<NlmUniqueID>8413200</NlmUniqueID>
<ISSNLinking>0174-1578</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029941">Fish Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006454">Hemoglobins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004912" MajorTopicYN="N">Erythrocytes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029941" MajorTopicYN="N">Fish Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005399" MajorTopicYN="N">Fishes</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006454" MajorTopicYN="N">Hemoglobins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>01</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20213180</ArticleId>
<ArticleId IdType="doi">10.1007/s00360-010-0450-5</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000391 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000391 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20213180
   |texte=   The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20213180" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EsturgeonV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024