Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose

Identifieur interne : 000064 ( PascalFrancis/Corpus ); précédent : 000063; suivant : 000065

Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose

Auteurs : Susie Shih-Yin Huang ; ANDERS BJERRING STRATHE ; Wei-Fang Wang ; Dong-Fang Deng ; James G. Fadel ; Silas S. O. Hung

Source :

RBID : Pascal:12-0172972

Descripteurs français

English descriptors

Abstract

Selenium (Se) is an essential micronutrient for all vertebrates, however, at environmental relevant levels, it is a potent toxin. In the San Francisco Bay-Delta, white sturgeon, an ancient Chondrostean fish of high ecological and economic value, is at risk to Se exposure. The present study is the first to examine the uptake, distribution, and excretion of various selenocompounds in white sturgeon. A combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized, in this study, to characterize the short-term effects of Se in the forms of sodium-selenate (Selenate), sodium-selenite (Selenite), selenocystine (SeCys), L-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), and selenoyeast (SeYeast). An ecologically relevant dose of Se (∼500 μg/kg body weight) was intubated into groups of 5 juvenile white sturgeon. Blood and urine samples were repeatedly collected over the 48 h post intubation period and fish were sacrificed for Se tissue concentration and distribution at 48 h. The tissue concentration and distribution, blood concentrations, and urinary elimination of Se significantly differ (p ≤ 0.05) among forms. In general, organic selenocompounds maintain higher blood concentrations, with SeMeCys maintaining the highest area under the curve (66.3 ± 8.7 and 9.3 ± 1.0 μg h/ml) and maximum Se concentration in blood (2.3± 0.2 and 0.4 ± 0.2 μg/ml) in both the protein and non-protein bound fractions, respectively. Selenate, however, did not result in significant increase ofSe concentration, compared with the control, in the protein-bound blood fraction. Regardless of source, Se is preferentially distributed into metabolically active tissues, with the SeMet treated fish achieving the highest concentration in most tissues. In contrast, Selenite has very similar blood concentrations and tissue distribution profile to SeCys and SeYeast. From blood and tissue Se concentrations, Selenate is not stored in blood, but taken up rapidly by the liver and white muscle. Urinary elimination of Se is form dependent and peaks between 3 and 12 h post intubation. A basic understanding of the overall Se absorption, distribution, and elimination is provided through monitoring tissue Se concentrations, however, conclusions regarding to the dynamics and the specific processes of Se metabolism can only be inferred, in the absence of kinetic information.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0166-445X
A02 01      @0 AQTODG
A03   1    @0 Aquat. toxicol.
A05       @2 109
A08 01  1  ENG  @1 Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose
A11 01  1    @1 HUANG (Susie Shih-Yin)
A11 02  1    @1 ANDERS BJERRING STRATHE
A11 03  1    @1 WANG (Wei-Fang)
A11 04  1    @1 DENG (Dong-Fang)
A11 05  1    @1 FADEL (James G.)
A11 06  1    @1 HUNG (Silas S. O.)
A14 01      @1 Department of Animal Science, University of California @2 Davis, CA @3 USA @Z 1 aut. @Z 2 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences @2 Qingdao @3 CHN @Z 3 aut.
A14 03      @1 Aquatic Feeds and Nutrition Department, Oceanic Institute @2 Waimanalo, HI @3 USA @Z 4 aut.
A20       @1 158-165
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 18841 @5 354000509616490180
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 12-0172972
A60       @1 P
A61       @0 A
A64 01  1    @0 Aquatic toxicology
A66 01      @0 NLD
C01 01    ENG  @0 Selenium (Se) is an essential micronutrient for all vertebrates, however, at environmental relevant levels, it is a potent toxin. In the San Francisco Bay-Delta, white sturgeon, an ancient Chondrostean fish of high ecological and economic value, is at risk to Se exposure. The present study is the first to examine the uptake, distribution, and excretion of various selenocompounds in white sturgeon. A combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized, in this study, to characterize the short-term effects of Se in the forms of sodium-selenate (Selenate), sodium-selenite (Selenite), selenocystine (SeCys), L-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), and selenoyeast (SeYeast). An ecologically relevant dose of Se (∼500 μg/kg body weight) was intubated into groups of 5 juvenile white sturgeon. Blood and urine samples were repeatedly collected over the 48 h post intubation period and fish were sacrificed for Se tissue concentration and distribution at 48 h. The tissue concentration and distribution, blood concentrations, and urinary elimination of Se significantly differ (p ≤ 0.05) among forms. In general, organic selenocompounds maintain higher blood concentrations, with SeMeCys maintaining the highest area under the curve (66.3 ± 8.7 and 9.3 ± 1.0 μg h/ml) and maximum Se concentration in blood (2.3± 0.2 and 0.4 ± 0.2 μg/ml) in both the protein and non-protein bound fractions, respectively. Selenate, however, did not result in significant increase ofSe concentration, compared with the control, in the protein-bound blood fraction. Regardless of source, Se is preferentially distributed into metabolically active tissues, with the SeMet treated fish achieving the highest concentration in most tissues. In contrast, Selenite has very similar blood concentrations and tissue distribution profile to SeCys and SeYeast. From blood and tissue Se concentrations, Selenate is not stored in blood, but taken up rapidly by the liver and white muscle. Urinary elimination of Se is form dependent and peaks between 3 and 12 h post intubation. A basic understanding of the overall Se absorption, distribution, and elimination is provided through monitoring tissue Se concentrations, however, conclusions regarding to the dynamics and the specific processes of Se metabolism can only be inferred, in the absence of kinetic information.
C02 01  X    @0 002A14D05A
C02 02  X    @0 002A15B
C03 01  X  FRE  @0 Animal jeune @5 01
C03 01  X  ENG  @0 Young animal @5 01
C03 01  X  SPA  @0 Animal joven @5 01
C03 02  X  FRE  @0 Sang @5 02
C03 02  X  ENG  @0 Blood @5 02
C03 02  X  SPA  @0 Sangre @5 02
C03 03  X  FRE  @0 Urine @5 03
C03 03  X  ENG  @0 Urine @5 03
C03 03  X  SPA  @0 Orina @5 03
C03 04  X  FRE  @0 Sélénium @2 NC @5 04
C03 04  X  ENG  @0 Selenium @2 NC @5 04
C03 04  X  SPA  @0 Selenio @2 NC @5 04
C03 05  X  FRE  @0 Mesure concentration @5 05
C03 05  X  ENG  @0 Concentration measurement @5 05
C03 05  X  SPA  @0 Medición concentración @5 05
C03 06  X  FRE  @0 Temps exposition @5 06
C03 06  X  ENG  @0 Exposure time @5 06
C03 06  X  SPA  @0 Tiempo exposición @5 06
C03 07  X  FRE  @0 Elimination @5 07
C03 07  X  ENG  @0 Elimination @5 07
C03 07  X  SPA  @0 Eliminación @5 07
C03 08  X  FRE  @0 Milieu aquatique @5 08
C03 08  X  ENG  @0 Aquatic environment @5 08
C03 08  X  SPA  @0 Medio acuático @5 08
C03 09  X  FRE  @0 Ecotoxicologie @5 09
C03 09  X  ENG  @0 Ecotoxicology @5 09
C03 09  X  SPA  @0 Ecotoxicología @5 09
C03 10  X  FRE  @0 Toxicité @5 23
C03 10  X  ENG  @0 Toxicity @5 23
C03 10  X  SPA  @0 Toxicidad @5 23
C03 11  X  FRE  @0 Acipenser transmontanus @2 NS @5 49
C03 11  X  ENG  @0 Acipenser transmontanus @2 NS @5 49
C03 11  X  SPA  @0 Acipenser transmontanus @2 NS @5 49
C07 01  X  FRE  @0 Pisces @2 NS @5 29
C07 01  X  ENG  @0 Pisces @2 NS @5 29
C07 01  X  SPA  @0 Pisces @2 NS @5 29
C07 02  X  FRE  @0 Vertebrata @2 NS
C07 02  X  ENG  @0 Vertebrata @2 NS
C07 02  X  SPA  @0 Vertebrata @2 NS
C07 03  X  FRE  @0 Acipenseridae @4 INC @5 70
N21       @1 129
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0172972 INIST
ET : Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose
AU : HUANG (Susie Shih-Yin); ANDERS BJERRING STRATHE; WANG (Wei-Fang); DENG (Dong-Fang); FADEL (James G.); HUNG (Silas S. O.)
AF : Department of Animal Science, University of California/Davis, CA/Etats-Unis (1 aut., 2 aut., 5 aut., 6 aut.); Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences/Qingdao/Chine (3 aut.); Aquatic Feeds and Nutrition Department, Oceanic Institute/Waimanalo, HI/Etats-Unis (4 aut.)
DT : Publication en série; Niveau analytique
SO : Aquatic toxicology; ISSN 0166-445X; Coden AQTODG; Pays-Bas; Da. 2012; Vol. 109; Pp. 158-165; Bibl. 3/4 p.
LA : Anglais
EA : Selenium (Se) is an essential micronutrient for all vertebrates, however, at environmental relevant levels, it is a potent toxin. In the San Francisco Bay-Delta, white sturgeon, an ancient Chondrostean fish of high ecological and economic value, is at risk to Se exposure. The present study is the first to examine the uptake, distribution, and excretion of various selenocompounds in white sturgeon. A combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized, in this study, to characterize the short-term effects of Se in the forms of sodium-selenate (Selenate), sodium-selenite (Selenite), selenocystine (SeCys), L-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), and selenoyeast (SeYeast). An ecologically relevant dose of Se (∼500 μg/kg body weight) was intubated into groups of 5 juvenile white sturgeon. Blood and urine samples were repeatedly collected over the 48 h post intubation period and fish were sacrificed for Se tissue concentration and distribution at 48 h. The tissue concentration and distribution, blood concentrations, and urinary elimination of Se significantly differ (p ≤ 0.05) among forms. In general, organic selenocompounds maintain higher blood concentrations, with SeMeCys maintaining the highest area under the curve (66.3 ± 8.7 and 9.3 ± 1.0 μg h/ml) and maximum Se concentration in blood (2.3± 0.2 and 0.4 ± 0.2 μg/ml) in both the protein and non-protein bound fractions, respectively. Selenate, however, did not result in significant increase ofSe concentration, compared with the control, in the protein-bound blood fraction. Regardless of source, Se is preferentially distributed into metabolically active tissues, with the SeMet treated fish achieving the highest concentration in most tissues. In contrast, Selenite has very similar blood concentrations and tissue distribution profile to SeCys and SeYeast. From blood and tissue Se concentrations, Selenate is not stored in blood, but taken up rapidly by the liver and white muscle. Urinary elimination of Se is form dependent and peaks between 3 and 12 h post intubation. A basic understanding of the overall Se absorption, distribution, and elimination is provided through monitoring tissue Se concentrations, however, conclusions regarding to the dynamics and the specific processes of Se metabolism can only be inferred, in the absence of kinetic information.
CC : 002A14D05A; 002A15B
FD : Animal jeune; Sang; Urine; Sélénium; Mesure concentration; Temps exposition; Elimination; Milieu aquatique; Ecotoxicologie; Toxicité; Acipenser transmontanus
FG : Pisces; Vertebrata; Acipenseridae
ED : Young animal; Blood; Urine; Selenium; Concentration measurement; Exposure time; Elimination; Aquatic environment; Ecotoxicology; Toxicity; Acipenser transmontanus
EG : Pisces; Vertebrata
SD : Animal joven; Sangre; Orina; Selenio; Medición concentración; Tiempo exposición; Eliminación; Medio acuático; Ecotoxicología; Toxicidad; Acipenser transmontanus
LO : INIST-18841.354000509616490180
ID : 12-0172972

Links to Exploration step

Pascal:12-0172972

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose</title>
<author>
<name sortKey="Huang, Susie Shih Yin" sort="Huang, Susie Shih Yin" uniqKey="Huang S" first="Susie Shih-Yin" last="Huang">Susie Shih-Yin Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Anders Bjerring Strathe" sort="Anders Bjerring Strathe" uniqKey="Anders Bjerring Strathe" last="Anders Bjerring Strathe">ANDERS BJERRING STRATHE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei Fang" sort="Wang, Wei Fang" uniqKey="Wang W" first="Wei-Fang" last="Wang">Wei-Fang Wang</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences</s1>
<s2>Qingdao</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Deng, Dong Fang" sort="Deng, Dong Fang" uniqKey="Deng D" first="Dong-Fang" last="Deng">Dong-Fang Deng</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Aquatic Feeds and Nutrition Department, Oceanic Institute</s1>
<s2>Waimanalo, HI</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0172972</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0172972 INIST</idno>
<idno type="RBID">Pascal:12-0172972</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000064</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose</title>
<author>
<name sortKey="Huang, Susie Shih Yin" sort="Huang, Susie Shih Yin" uniqKey="Huang S" first="Susie Shih-Yin" last="Huang">Susie Shih-Yin Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Anders Bjerring Strathe" sort="Anders Bjerring Strathe" uniqKey="Anders Bjerring Strathe" last="Anders Bjerring Strathe">ANDERS BJERRING STRATHE</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei Fang" sort="Wang, Wei Fang" uniqKey="Wang W" first="Wei-Fang" last="Wang">Wei-Fang Wang</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences</s1>
<s2>Qingdao</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Deng, Dong Fang" sort="Deng, Dong Fang" uniqKey="Deng D" first="Dong-Fang" last="Deng">Dong-Fang Deng</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Aquatic Feeds and Nutrition Department, Oceanic Institute</s1>
<s2>Waimanalo, HI</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fadel, James G" sort="Fadel, James G" uniqKey="Fadel J" first="James G." last="Fadel">James G. Fadel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hung, Silas S O" sort="Hung, Silas S O" uniqKey="Hung S" first="Silas S. O." last="Hung">Silas S. O. Hung</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Aquatic toxicology</title>
<title level="j" type="abbreviated">Aquat. toxicol.</title>
<idno type="ISSN">0166-445X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acipenser transmontanus</term>
<term>Aquatic environment</term>
<term>Blood</term>
<term>Concentration measurement</term>
<term>Ecotoxicology</term>
<term>Elimination</term>
<term>Exposure time</term>
<term>Selenium</term>
<term>Toxicity</term>
<term>Urine</term>
<term>Young animal</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Animal jeune</term>
<term>Sang</term>
<term>Urine</term>
<term>Sélénium</term>
<term>Mesure concentration</term>
<term>Temps exposition</term>
<term>Elimination</term>
<term>Milieu aquatique</term>
<term>Ecotoxicologie</term>
<term>Toxicité</term>
<term>Acipenser transmontanus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Selenium (Se) is an essential micronutrient for all vertebrates, however, at environmental relevant levels, it is a potent toxin. In the San Francisco Bay-Delta, white sturgeon, an ancient Chondrostean fish of high ecological and economic value, is at risk to Se exposure. The present study is the first to examine the uptake, distribution, and excretion of various selenocompounds in white sturgeon. A combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized, in this study, to characterize the short-term effects of Se in the forms of sodium-selenate (Selenate), sodium-selenite (Selenite), selenocystine (SeCys),
<sub>L</sub>
-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), and selenoyeast (SeYeast). An ecologically relevant dose of Se (∼500 μg/kg body weight) was intubated into groups of 5 juvenile white sturgeon. Blood and urine samples were repeatedly collected over the 48 h post intubation period and fish were sacrificed for Se tissue concentration and distribution at 48 h. The tissue concentration and distribution, blood concentrations, and urinary elimination of Se significantly differ (p ≤ 0.05) among forms. In general, organic selenocompounds maintain higher blood concentrations, with SeMeCys maintaining the highest area under the curve (66.3 ± 8.7 and 9.3 ± 1.0 μg h/ml) and maximum Se concentration in blood (2.3± 0.2 and 0.4 ± 0.2 μg/ml) in both the protein and non-protein bound fractions, respectively. Selenate, however, did not result in significant increase ofSe concentration, compared with the control, in the protein-bound blood fraction. Regardless of source, Se is preferentially distributed into metabolically active tissues, with the SeMet treated fish achieving the highest concentration in most tissues. In contrast, Selenite has very similar blood concentrations and tissue distribution profile to SeCys and SeYeast. From blood and tissue Se concentrations, Selenate is not stored in blood, but taken up rapidly by the liver and white muscle. Urinary elimination of Se is form dependent and peaks between 3 and 12 h post intubation. A basic understanding of the overall Se absorption, distribution, and elimination is provided through monitoring tissue Se concentrations, however, conclusions regarding to the dynamics and the specific processes of Se metabolism can only be inferred, in the absence of kinetic information.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0166-445X</s0>
</fA01>
<fA02 i1="01">
<s0>AQTODG</s0>
</fA02>
<fA03 i2="1">
<s0>Aquat. toxicol.</s0>
</fA03>
<fA05>
<s2>109</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HUANG (Susie Shih-Yin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANDERS BJERRING STRATHE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WANG (Wei-Fang)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DENG (Dong-Fang)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FADEL (James G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HUNG (Silas S. O.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Animal Science, University of California</s1>
<s2>Davis, CA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences</s1>
<s2>Qingdao</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Aquatic Feeds and Nutrition Department, Oceanic Institute</s1>
<s2>Waimanalo, HI</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>158-165</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18841</s2>
<s5>354000509616490180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0172972</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Aquatic toxicology</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Selenium (Se) is an essential micronutrient for all vertebrates, however, at environmental relevant levels, it is a potent toxin. In the San Francisco Bay-Delta, white sturgeon, an ancient Chondrostean fish of high ecological and economic value, is at risk to Se exposure. The present study is the first to examine the uptake, distribution, and excretion of various selenocompounds in white sturgeon. A combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized, in this study, to characterize the short-term effects of Se in the forms of sodium-selenate (Selenate), sodium-selenite (Selenite), selenocystine (SeCys),
<sub>L</sub>
-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), and selenoyeast (SeYeast). An ecologically relevant dose of Se (∼500 μg/kg body weight) was intubated into groups of 5 juvenile white sturgeon. Blood and urine samples were repeatedly collected over the 48 h post intubation period and fish were sacrificed for Se tissue concentration and distribution at 48 h. The tissue concentration and distribution, blood concentrations, and urinary elimination of Se significantly differ (p ≤ 0.05) among forms. In general, organic selenocompounds maintain higher blood concentrations, with SeMeCys maintaining the highest area under the curve (66.3 ± 8.7 and 9.3 ± 1.0 μg h/ml) and maximum Se concentration in blood (2.3± 0.2 and 0.4 ± 0.2 μg/ml) in both the protein and non-protein bound fractions, respectively. Selenate, however, did not result in significant increase ofSe concentration, compared with the control, in the protein-bound blood fraction. Regardless of source, Se is preferentially distributed into metabolically active tissues, with the SeMet treated fish achieving the highest concentration in most tissues. In contrast, Selenite has very similar blood concentrations and tissue distribution profile to SeCys and SeYeast. From blood and tissue Se concentrations, Selenate is not stored in blood, but taken up rapidly by the liver and white muscle. Urinary elimination of Se is form dependent and peaks between 3 and 12 h post intubation. A basic understanding of the overall Se absorption, distribution, and elimination is provided through monitoring tissue Se concentrations, however, conclusions regarding to the dynamics and the specific processes of Se metabolism can only be inferred, in the absence of kinetic information.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A14D05A</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A15B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Animal jeune</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Young animal</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Animal joven</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Sang</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Blood</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Sangre</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Urine</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Urine</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Orina</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Sélénium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Selenium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Selenio</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Mesure concentration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Concentration measurement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Medición concentración</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Temps exposition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Exposure time</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tiempo exposición</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Elimination</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Elimination</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Eliminación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Milieu aquatique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Aquatic environment</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Medio acuático</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Ecotoxicologie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Ecotoxicology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Ecotoxicología</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Toxicité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Toxicity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Toxicidad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Acipenser transmontanus</s0>
<s2>NS</s2>
<s5>49</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Pisces</s0>
<s2>NS</s2>
<s5>29</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Acipenseridae</s0>
<s4>INC</s4>
<s5>70</s5>
</fC07>
<fN21>
<s1>129</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0172972 INIST</NO>
<ET>Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose</ET>
<AU>HUANG (Susie Shih-Yin); ANDERS BJERRING STRATHE; WANG (Wei-Fang); DENG (Dong-Fang); FADEL (James G.); HUNG (Silas S. O.)</AU>
<AF>Department of Animal Science, University of California/Davis, CA/Etats-Unis (1 aut., 2 aut., 5 aut., 6 aut.); Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institutes, Chinese Academy of Fishery Sciences/Qingdao/Chine (3 aut.); Aquatic Feeds and Nutrition Department, Oceanic Institute/Waimanalo, HI/Etats-Unis (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Aquatic toxicology; ISSN 0166-445X; Coden AQTODG; Pays-Bas; Da. 2012; Vol. 109; Pp. 158-165; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Selenium (Se) is an essential micronutrient for all vertebrates, however, at environmental relevant levels, it is a potent toxin. In the San Francisco Bay-Delta, white sturgeon, an ancient Chondrostean fish of high ecological and economic value, is at risk to Se exposure. The present study is the first to examine the uptake, distribution, and excretion of various selenocompounds in white sturgeon. A combined technique of stomach intubation, dorsal aorta cannulation, and urinary catheterization was utilized, in this study, to characterize the short-term effects of Se in the forms of sodium-selenate (Selenate), sodium-selenite (Selenite), selenocystine (SeCys),
<sub>L</sub>
-selenomethionine (SeMet), Se-methylseleno-L-cysteine (MSeCys), and selenoyeast (SeYeast). An ecologically relevant dose of Se (∼500 μg/kg body weight) was intubated into groups of 5 juvenile white sturgeon. Blood and urine samples were repeatedly collected over the 48 h post intubation period and fish were sacrificed for Se tissue concentration and distribution at 48 h. The tissue concentration and distribution, blood concentrations, and urinary elimination of Se significantly differ (p ≤ 0.05) among forms. In general, organic selenocompounds maintain higher blood concentrations, with SeMeCys maintaining the highest area under the curve (66.3 ± 8.7 and 9.3 ± 1.0 μg h/ml) and maximum Se concentration in blood (2.3± 0.2 and 0.4 ± 0.2 μg/ml) in both the protein and non-protein bound fractions, respectively. Selenate, however, did not result in significant increase ofSe concentration, compared with the control, in the protein-bound blood fraction. Regardless of source, Se is preferentially distributed into metabolically active tissues, with the SeMet treated fish achieving the highest concentration in most tissues. In contrast, Selenite has very similar blood concentrations and tissue distribution profile to SeCys and SeYeast. From blood and tissue Se concentrations, Selenate is not stored in blood, but taken up rapidly by the liver and white muscle. Urinary elimination of Se is form dependent and peaks between 3 and 12 h post intubation. A basic understanding of the overall Se absorption, distribution, and elimination is provided through monitoring tissue Se concentrations, however, conclusions regarding to the dynamics and the specific processes of Se metabolism can only be inferred, in the absence of kinetic information.</EA>
<CC>002A14D05A; 002A15B</CC>
<FD>Animal jeune; Sang; Urine; Sélénium; Mesure concentration; Temps exposition; Elimination; Milieu aquatique; Ecotoxicologie; Toxicité; Acipenser transmontanus</FD>
<FG>Pisces; Vertebrata; Acipenseridae</FG>
<ED>Young animal; Blood; Urine; Selenium; Concentration measurement; Exposure time; Elimination; Aquatic environment; Ecotoxicology; Toxicity; Acipenser transmontanus</ED>
<EG>Pisces; Vertebrata</EG>
<SD>Animal joven; Sangre; Orina; Selenio; Medición concentración; Tiempo exposición; Eliminación; Medio acuático; Ecotoxicología; Toxicidad; Acipenser transmontanus</SD>
<LO>INIST-18841.354000509616490180</LO>
<ID>12-0172972</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0172972
   |texte=   Selenocompounds in juvenile white sturgeon: Evaluating blood, tissue, and urine selenium concentrations after a single oral dose
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024