Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Covariance between Genetic and Environmental Influences across Ecological Gradients

Identifieur interne : 001574 ( Istex/Corpus ); précédent : 001573; suivant : 001575

The Covariance between Genetic and Environmental Influences across Ecological Gradients

Auteurs : David O. Conover ; Tara A. Duffy ; Lyndie A. Hice

Source :

RBID : ISTEX:0242B9174A338CB3DBD0265B4BDCB9959836C2F2

English descriptors

Abstract

Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.

Url:
DOI: 10.1111/j.1749-6632.2009.04575.x

Links to Exploration step

ISTEX:0242B9174A338CB3DBD0265B4BDCB9959836C2F2

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
<author>
<name sortKey="Conover, David O" sort="Conover, David O" uniqKey="Conover D" first="David O." last="Conover">David O. Conover</name>
<affiliation>
<mods:affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duffy, Tara A" sort="Duffy, Tara A" uniqKey="Duffy T" first="Tara A." last="Duffy">Tara A. Duffy</name>
<affiliation>
<mods:affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hice, Lyndie A" sort="Hice, Lyndie A" uniqKey="Hice L" first="Lyndie A." last="Hice">Lyndie A. Hice</name>
<affiliation>
<mods:affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0242B9174A338CB3DBD0265B4BDCB9959836C2F2</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1111/j.1749-6632.2009.04575.x</idno>
<idno type="url">https://api.istex.fr/document/0242B9174A338CB3DBD0265B4BDCB9959836C2F2/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001574</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001574</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
<author>
<name sortKey="Conover, David O" sort="Conover, David O" uniqKey="Conover D" first="David O." last="Conover">David O. Conover</name>
<affiliation>
<mods:affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duffy, Tara A" sort="Duffy, Tara A" uniqKey="Duffy T" first="Tara A." last="Duffy">Tara A. Duffy</name>
<affiliation>
<mods:affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hice, Lyndie A" sort="Hice, Lyndie A" uniqKey="Hice L" first="Lyndie A." last="Hice">Lyndie A. Hice</name>
<affiliation>
<mods:affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Annals of the New York Academy of Sciences</title>
<idno type="ISSN">0077-8923</idno>
<idno type="eISSN">1749-6632</idno>
<imprint>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2009-06">2009-06</date>
<biblScope unit="volume">1168</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="100">100</biblScope>
<biblScope unit="page" to="129">129</biblScope>
</imprint>
<idno type="ISSN">0077-8923</idno>
</series>
<idno type="istex">0242B9174A338CB3DBD0265B4BDCB9959836C2F2</idno>
<idno type="DOI">10.1111/j.1749-6632.2009.04575.x</idno>
<idno type="ArticleID">NYAS04575</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0077-8923</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bergmann's rule</term>
<term>adaptation</term>
<term>clines</term>
<term>cogradient variation</term>
<term>conservation biology</term>
<term>countergradient variation</term>
<term>covariance</term>
<term>genetic compensation</term>
<term>growth rate evolution</term>
<term>phenotypic plasticity</term>
<term>species range</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>David O. Conover</name>
<affiliations>
<json:string>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Tara A. Duffy</name>
<affiliations>
<json:string>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lyndie A. Hice</name>
<affiliations>
<json:string>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>countergradient variation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cogradient variation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>covariance</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>clines</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>genetic compensation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>adaptation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>phenotypic plasticity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Bergmann's rule</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>growth rate evolution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>species range</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>conservation biology</value>
</json:item>
</subject>
<articleId>
<json:string>NYAS04575</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.</abstract>
<qualityIndicators>
<score>8.392</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>504 x 720 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1768</abstractCharCount>
<pdfWordCount>14588</pdfWordCount>
<pdfCharCount>95190</pdfCharCount>
<pdfPageCount>30</pdfPageCount>
<abstractWordCount>241</abstractWordCount>
</qualityIndicators>
<title>The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>1168</volume>
<publisherId>
<json:string>NYAS</json:string>
</publisherId>
<pages>
<total>30</total>
<last>129</last>
<first>100</first>
</pages>
<issn>
<json:string>0077-8923</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1749-6632</json:string>
</eissn>
<title>Annals of the New York Academy of Sciences</title>
<doi>
<json:string>10.1111/(ISSN)1749-6632</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>multidisciplinary sciences</json:string>
</wos>
<scienceMetrix>
<json:string>general</json:string>
<json:string>general science & technology</json:string>
<json:string>general science & technology</json:string>
</scienceMetrix>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1111/j.1749-6632.2009.04575.x</json:string>
</doi>
<id>0242B9174A338CB3DBD0265B4BDCB9959836C2F2</id>
<score>0.008758154</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/0242B9174A338CB3DBD0265B4BDCB9959836C2F2/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/0242B9174A338CB3DBD0265B4BDCB9959836C2F2/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0242B9174A338CB3DBD0265B4BDCB9959836C2F2/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
<title level="a" type="sub" xml:lang="en">Reassessing the Evolutionary Significance of Countergradient and Cogradient Variation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<availability>
<p>© 2009 New York Academy of Sciences</p>
</availability>
<date>2009</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
<title level="a" type="sub" xml:lang="en">Reassessing the Evolutionary Significance of Countergradient and Cogradient Variation</title>
<author xml:id="author-1">
<persName>
<forename type="first">David O.</forename>
<surname>Conover</surname>
</persName>
<affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Tara A.</forename>
<surname>Duffy</surname>
</persName>
<affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Lyndie A.</forename>
<surname>Hice</surname>
</persName>
<affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Annals of the New York Academy of Sciences</title>
<idno type="pISSN">0077-8923</idno>
<idno type="eISSN">1749-6632</idno>
<idno type="DOI">10.1111/(ISSN)1749-6632</idno>
<imprint>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2009-06"></date>
<biblScope unit="volume">1168</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="100">100</biblScope>
<biblScope unit="page" to="129">129</biblScope>
</imprint>
</monogr>
<idno type="istex">0242B9174A338CB3DBD0265B4BDCB9959836C2F2</idno>
<idno type="DOI">10.1111/j.1749-6632.2009.04575.x</idno>
<idno type="ArticleID">NYAS04575</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>countergradient variation</term>
</item>
<item>
<term>cogradient variation</term>
</item>
<item>
<term>covariance</term>
</item>
<item>
<term>clines</term>
</item>
<item>
<term>genetic compensation</term>
</item>
<item>
<term>adaptation</term>
</item>
<item>
<term>phenotypic plasticity</term>
</item>
<item>
<term>Bergmann's rule</term>
</item>
<item>
<term>growth rate evolution</term>
</item>
<item>
<term>species range</term>
</item>
<item>
<term>conservation biology</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/0242B9174A338CB3DBD0265B4BDCB9959836C2F2/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Inc</publisherName>
<publisherLoc>Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1749-6632</doi>
<issn type="print">0077-8923</issn>
<issn type="electronic">1749-6632</issn>
<idGroup>
<id type="product" value="NYAS"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="ANNALS OF NEW YORK ACADEMY SCIENCES">Annals of the New York Academy of Sciences</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="11681">
<doi origin="wiley">10.1111/nyas.2009.1168.issue-1</doi>
<titleGroup>
<title type="main">The Year in Evolutionary Biology 2009</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="11681">1168</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2009-06">June 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="6" status="forIssue">
<doi origin="wiley">10.1111/j.1749-6632.2009.04575.x</doi>
<idGroup>
<id type="unit" value="NYAS04575"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="30"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Part I. Review and Synthesis</title>
</titleGroup>
<copyright>© 2009 New York Academy of Sciences</copyright>
<eventGroup>
<event type="firstOnline" date="2009-06-24"></event>
<event type="publishedOnlineFinalForm" date="2009-06-24"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.23 mode:FullText" date="2010-10-13"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-19"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-14"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="100">100</numbering>
<numbering type="pageLast" number="129">129</numbering>
</numberingGroup>
<correspondenceTo>Address for correspondence: David O. Conover, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794‐5000. Voice: 631‐632‐8187; fax: 631‐632‐8915.
<email>dconover@notes.cc.sunysb.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NYAS.NYAS04575.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="2"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="179"></count>
<count type="linksCrossRef" number="449"></count>
</countGroup>
<titleGroup>
<title type="main">The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
<title type="subtitle">Reassessing the Evolutionary Significance of Countergradient and Cogradient Variation</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>David O.</givenNames>
<familyName>Conover</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Tara A.</givenNames>
<familyName>Duffy</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>Lyndie A.</givenNames>
<familyName>Hice</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">countergradient variation</keyword>
<keyword xml:id="k2">cogradient variation</keyword>
<keyword xml:id="k3">covariance</keyword>
<keyword xml:id="k4">clines</keyword>
<keyword xml:id="k5">genetic compensation</keyword>
<keyword xml:id="k6">adaptation</keyword>
<keyword xml:id="k7">phenotypic plasticity</keyword>
<keyword xml:id="k8">Bergmann's rule</keyword>
<keyword xml:id="k9">growth rate evolution</keyword>
<keyword xml:id="k10">species range</keyword>
<keyword xml:id="k11">conservation biology</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
<subTitle>Reassessing the Evolutionary Significance of Countergradient and Cogradient Variation</subTitle>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The Covariance between Genetic and Environmental Influences across Ecological Gradients</title>
</titleInfo>
<name type="personal">
<namePart type="given">David O.</namePart>
<namePart type="family">Conover</namePart>
<affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tara A.</namePart>
<namePart type="family">Duffy</namePart>
<affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lyndie A.</namePart>
<namePart type="family">Hice</namePart>
<affiliation>School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Inc</publisher>
<place>
<placeTerm type="text">Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-06</dateIssued>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">3</extent>
<extent unit="tables">2</extent>
<extent unit="references">179</extent>
</physicalDescription>
<abstract lang="en">Patterns of phenotypic change across environmental gradients (e.g., latitude, altitude) have long captivated the interest of evolutionary ecologists. The pattern and magnitude of phenotypic change is determined by the covariance between genetic and environmental influences across a gradient. Cogradient variation (CoGV) occurs when covariance is positive: that is, genetic and environmental influences on phenotypic expression are aligned and their joint influence accentuates the change in mean trait value across the gradient. Conversely, countergradient variation (CnGV) occurs when covariance is negative: that is, genetic and environmental influences on phenotypes oppose one another, thereby diminishing the change in mean trait expression across the gradient. CnGV has so far been found in at least 60 species, with most examples coming from fishes, amphibians, and insects across latitudinal or altitudinal gradients. Traits that display CnGV most often involve metabolic compensation, that is, the elevation of various physiological rates processes (development, growth, feeding, metabolism, activity) to counteract the dampening effect of reduced temperature, growing season length, or food supply. Far fewer examples of CoGV have been identified (11 species), and these most often involve morphological characters. Increased knowledge of spatial covariance patterns has furthered our understanding of Bergmann size clines, phenotypic plasticity, species range limits, tradeoffs in juvenile growth rate, and the design of conservation strategies for wild species. Moreover, temporal CnGV explains some cases of an apparent lack of phenotypic response to directional selection and provides a framework for predicting evolutionary responses to climate change.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>countergradient variation</topic>
<topic>cogradient variation</topic>
<topic>covariance</topic>
<topic>clines</topic>
<topic>genetic compensation</topic>
<topic>adaptation</topic>
<topic>phenotypic plasticity</topic>
<topic>Bergmann's rule</topic>
<topic>growth rate evolution</topic>
<topic>species range</topic>
<topic>conservation biology</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Annals of the New York Academy of Sciences</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0077-8923</identifier>
<identifier type="eISSN">1749-6632</identifier>
<identifier type="DOI">10.1111/(ISSN)1749-6632</identifier>
<identifier type="PublisherID">NYAS</identifier>
<part>
<date>2009</date>
<detail type="title">
<title>The Year in Evolutionary Biology 2009</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>1168</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>100</start>
<end>129</end>
<total>30</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0242B9174A338CB3DBD0265B4BDCB9959836C2F2</identifier>
<identifier type="DOI">10.1111/j.1749-6632.2009.04575.x</identifier>
<identifier type="ArticleID">NYAS04575</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2009 New York Academy of Sciences</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Inc</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001574 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001574 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0242B9174A338CB3DBD0265B4BDCB9959836C2F2
   |texte=   The Covariance between Genetic and Environmental Influences across Ecological Gradients
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024