Serveur d'exploration sur l'esturgeon

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development

Identifieur interne : 001549 ( Istex/Corpus ); précédent : 001548; suivant : 001550

Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development

Auteurs : Ruth Morona ; Agustín González

Source :

RBID : ISTEX:7B7667BF488D857B02DC3C7A1631E8A10FA67B87

English descriptors

Abstract

The present study represents a detailed spatiotemporal analysis of the localization of calbindin‐D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. J. Comp. Neurol. 521:79–108, 2013. © 2012 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/cne.23163

Links to Exploration step

ISTEX:7B7667BF488D857B02DC3C7A1631E8A10FA67B87

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development</title>
<author>
<name sortKey="Morona, Ruth" sort="Morona, Ruth" uniqKey="Morona R" first="Ruth" last="Morona">Ruth Morona</name>
<affiliation>
<mods:affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Agustin" sort="Gonzalez, Agustin" uniqKey="Gonzalez A" first="Agustín" last="González">Agustín González</name>
<affiliation>
<mods:affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7B7667BF488D857B02DC3C7A1631E8A10FA67B87</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/cne.23163</idno>
<idno type="url">https://api.istex.fr/document/7B7667BF488D857B02DC3C7A1631E8A10FA67B87/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001549</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001549</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development</title>
<author>
<name sortKey="Morona, Ruth" sort="Morona, Ruth" uniqKey="Morona R" first="Ruth" last="Morona">Ruth Morona</name>
<affiliation>
<mods:affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez, Agustin" sort="Gonzalez, Agustin" uniqKey="Gonzalez A" first="Agustín" last="González">Agustín González</name>
<affiliation>
<mods:affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="ISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-01-01">2013-01-01</date>
<biblScope unit="volume">521</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="79">79</biblScope>
<biblScope unit="page" to="108">108</biblScope>
</imprint>
<idno type="ISSN">0021-9967</idno>
</series>
<idno type="istex">7B7667BF488D857B02DC3C7A1631E8A10FA67B87</idno>
<idno type="DOI">10.1002/cne.23163</idno>
<idno type="ArticleID">CNE23163</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9967</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>amphibians</term>
<term>brainstem</term>
<term>calcium‐binding proteins</term>
<term>evolution</term>
<term>telencephalon</term>
<term>thalamus</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present study represents a detailed spatiotemporal analysis of the localization of calbindin‐D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. J. Comp. Neurol. 521:79–108, 2013. © 2012 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Ruth Morona</name>
<affiliations>
<json:string>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</json:string>
</affiliations>
</json:item>
<json:item>
<name>Agustín González</name>
<affiliations>
<json:string>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</json:string>
<json:string>Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>calcium‐binding proteins</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>telencephalon</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thalamus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>brainstem</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>evolution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>amphibians</value>
</json:item>
</subject>
<articleId>
<json:string>CNE23163</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The present study represents a detailed spatiotemporal analysis of the localization of calbindin‐D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. J. Comp. Neurol. 521:79–108, 2013. © 2012 Wiley Periodicals, Inc.</abstract>
<qualityIndicators>
<score>8.188</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>612 x 809.972 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1560</abstractCharCount>
<pdfWordCount>18414</pdfWordCount>
<pdfCharCount>117571</pdfCharCount>
<pdfPageCount>30</pdfPageCount>
<abstractWordCount>224</abstractWordCount>
</qualityIndicators>
<title>Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>521</volume>
<publisherId>
<json:string>CNE</json:string>
</publisherId>
<pages>
<total>31</total>
<last>108</last>
<first>79</first>
</pages>
<issn>
<json:string>0021-9967</json:string>
</issn>
<issue>1</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9861</json:string>
</eissn>
<title>Journal of Comparative Neurology</title>
<doi>
<json:string>10.1002/(ISSN)1096-9861</json:string>
</doi>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>zoology</json:string>
<json:string>neurosciences</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>neurology & neurosurgery</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/cne.23163</json:string>
</doi>
<id>7B7667BF488D857B02DC3C7A1631E8A10FA67B87</id>
<score>0.012014409</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7B7667BF488D857B02DC3C7A1631E8A10FA67B87/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7B7667BF488D857B02DC3C7A1631E8A10FA67B87/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7B7667BF488D857B02DC3C7A1631E8A10FA67B87/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>Copyright © 2012 Wiley Periodicals, Inc.</p>
</availability>
<date>2013</date>
</publicationStmt>
<notesStmt>
<note>Spanish Ministry of Science and Technology - No. BFU2009‐12315; No. BFU2012‐31687;</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development</title>
<author xml:id="author-1">
<persName>
<forename type="first">Ruth</forename>
<surname>Morona</surname>
</persName>
<affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Agustín</forename>
<surname>González</surname>
</persName>
<affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</affiliation>
<affiliation>Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Comparative Neurology</title>
<title level="j" type="abbrev">J. Comp. Neurol.</title>
<idno type="pISSN">0021-9967</idno>
<idno type="eISSN">1096-9861</idno>
<idno type="DOI">10.1002/(ISSN)1096-9861</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-01-01"></date>
<biblScope unit="volume">521</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="79">79</biblScope>
<biblScope unit="page" to="108">108</biblScope>
</imprint>
</monogr>
<idno type="istex">7B7667BF488D857B02DC3C7A1631E8A10FA67B87</idno>
<idno type="DOI">10.1002/cne.23163</idno>
<idno type="ArticleID">CNE23163</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2013</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The present study represents a detailed spatiotemporal analysis of the localization of calbindin‐D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. J. Comp. Neurol. 521:79–108, 2013. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p></p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>calcium‐binding proteins</term>
</item>
<item>
<term>telencephalon</term>
</item>
<item>
<term>thalamus</term>
</item>
<item>
<term>brainstem</term>
</item>
<item>
<term>evolution</term>
</item>
<item>
<term>amphibians</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-03-05">Received</change>
<change when="2012-06-01">Registration</change>
<change when="2013-01-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7B7667BF488D857B02DC3C7A1631E8A10FA67B87/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9861</doi>
<issn type="print">0021-9967</issn>
<issn type="electronic">1096-9861</issn>
<idGroup>
<id type="product" value="CNE"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF COMPARATIVE NEUROLOGY">Journal of Comparative Neurology</title>
<title type="short">J. Comp. Neurol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/cne.v521.1</doi>
<numberingGroup>
<numbering type="journalVolume" number="521">521</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2013-01-01">1 January 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="70" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/cne.23163</doi>
<idGroup>
<id type="unit" value="CNE23163"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="31"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2012 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-03-05"></event>
<event type="manuscriptRevised" date="2012-05-07"></event>
<event type="manuscriptAccepted" date="2012-06-01"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.1.9 mode:FullText" date="2013-01-12"></event>
<event type="publishedOnlineAccepted" date="2012-06-08"></event>
<event type="publishedOnlineFinalForm" date="2012-11-22"></event>
<event type="firstOnline" date="2012-11-22"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">79</numbering>
<numbering type="pageLast">108</numbering>
</numberingGroup>
<correspondenceTo>Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CNE.CNE23163.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="228"></count>
<count type="wordTotal" number="22067"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of
<i>Xenopus laevis</i>
during embryonic and larval development</title>
<title type="short" xml:lang="en">Calbindin and Calretinin in
<fi>Xenopus</fi>
Brain</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Ruth</givenNames>
<familyName>Morona</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Agustín</givenNames>
<familyName>González</familyName>
</personName>
<contactDetails>
<email>agustin@bio.ucm.es</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="ES" type="organization">
<unparsedAffiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">calcium‐binding proteins</keyword>
<keyword xml:id="kwd2">telencephalon</keyword>
<keyword xml:id="kwd3">thalamus</keyword>
<keyword xml:id="kwd4">brainstem</keyword>
<keyword xml:id="kwd5">evolution</keyword>
<keyword xml:id="kwd6">amphibians</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Spanish Ministry of Science and Technology</fundingAgency>
<fundingNumber>BFU2009‐12315</fundingNumber>
<fundingNumber>BFU2012‐31687</fundingNumber>
</fundingInfo>
<supportingInformation>
<p> Additional Supporting Information may be found in the online version of this article. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23163:CNE_23163_sm_SuppFig1"></mediaResource>
<caption>Supporting Figure 1 (Magentahyphen;green version of Figure 2 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled CB/CR sagittal (a, dorsal is upwards and rostral to the left) and transverse (bhyphen;t) sections through representative levels of the brain of Xenopus at embryonic stages (indicated on each photomicrograph).The levels of transverse sections are indicated in Figure 1a and b. In all photographs green is CB and red is CR, whereas yellow represents double labeled cells. Dashed lines mark the approximate boundary between neuromeres and telencephalic subdivisions. Arrowheads in f point to the lateral CRir fiber tract in p2, in h and s point to the lateral CRir fiber tract in the basal plate, and in q to doble labeled cells in the LDT. The asterisks in r and t mark the CBir fibers in the lateral rhombencephalon. For abbreviations, see list. A magentahyphen;green version of this figure is provided as Supporting Information Figure 1. Scale bar = 50 μm in ahyphen;h; 100 μm in ihyphen;t.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23163:CNE_23163_sm_SuppFig2"></mediaResource>
<caption>Supporting Figure 2 (Magentahyphen;green version of Figure 3 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled CB/CR sagittal (a,k,l; dorsal is upwards and rostral to the left) and transverse (bhyphen;j) sections through representative levels of the brain of Xenopus at premetamorphic stages (indicated on each photomicrograph). The levels of transverse sections for stage 50, and the area shown in a, are indicated in Figure 1c. In all photographs green is CB and red is CR, whereas yellow represents double labeled cells. Dashed lines represent the approximate boundary between telencephalic (e,f) or diencephalic (a,b,h,k,l) subdivisions, the mesencephalic longitudinal bands (c,g,k) and rhombencephalic regions (d,i,j). For abbreviations, see list. A magentahyphen;green version of this figure is provided as Supporting Information Figure 2. Scale bar =100 μm in ahyphen;j,l; 200 μm in k.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23163:CNE_23163_sm_SuppFig3"></mediaResource>
<caption>Supporting Figure 3 (Magentahyphen;green version of Figure 4 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled CB/CR transverse (ahyphen;h) and sagittal (ihyphen;k; dorsal is upwards and rostral to the left) sections through representative levels of the brain of Xenopus at prometamorphic stages (indicated on each photomicrograph). The levels of transverse sections are indicated in Figure 1d. In all photographs green is CB and red is CR, whereas yellow represents double labeled cells. Dashed lines represent the approximate boundary between telencephalic (ahyphen;d, i), diencephalic (ehyphen;g, ihyphen;k), mesencephalic (g,h) and rhombencephalic (i) subdivisions. i: Low magnification image of a lateral sagittal section showing the relationship between CB and CR labeled structures throughout the brain of a prometamorphic larva. j,k: Details of sagittal sections through the hypothalamic (j) and pretectal (k) region showing the relative localization of CBhyphen; and CRhyphen;labeled structures in each subdivision.. Inset in panel g' shows trigeminal mesencephalic neurons (arrowheads) in the rostral optic tectum. For abbreviations, see list. A magentahyphen;green version of this figure is provided as Supporting Information Figure 3. Scale bar =100 μm in ahyphen;h,k; 200 μm in i,j.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:00219967:media:cne23163:CNE_23163_sm_SuppFig4"></mediaResource>
<caption>Supporting Figure 4 (Magentahyphen;green version of Figure 5 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled sagittal (ahyphen;i; dorsal is upwards and rostral to the left) and horizontal (j; rostral is to the left) sections through the brain of Xenopus at different developmental stages showing the distribution of CB or CR immunoreactive cells with nitric oxide synthase (NOS), tyrosine hydroxylase (TH) or choline acelyltransferase (ChAT). The markers shown in each panel are indicated in aprópiate color code, and the developmental stage is indicated in the upper rigth corner. ahyphen;c: relative localization of nitrergic (a) catecholaminergic (b) and cholinergic (c) populations compared to CR at stage 45. d: Colocalization of CR in the large niterergic cells of the central amygdala (double labeled cells in yellow). e: Distribution of CR in relation to the catecholaminergic cells in the preoptic and suprachiasmatic regions. f: Segmental distribution of the alar CRir cell groups in relation to the basal catecholaminergic cell groups, g: CRir and NOSir cells in the distinct dorsal and lateral bands in the mesencephalon, and along the rhombencephalon. h: High magnification of double CR/NOS labeled cells in the inferior reticular nucleus. i: CBir cells in the alar region of r0 and r1 in relation to the cholinergic nuclei. Arrowhead points to the fibers of the troclear nucleus in the basal plate (not shown). j: Horizontal section showing the relative position and the segmental arrangement of CR groups in relation to the ChATir motor and nonhyphen;motor cholinergic groups in the rhombencephalon. khyphen;m: Relative localization CBir cells in relation to the oculomotor, isthmic, rhombencephalic and spinal cholinergic cell groups. Doublehyphen;labeled cells always appear in yellow. nhyphen;p: CB and NOShyphen;stained structures in a premetamorphic larva in the mesencephalon and rostral rhombencephalon (n) and in prometamorphic larvae in the caudal telencephalon (o) and mesencephalon and rostral rhombencephalon (p). Double labeled CB/NOSir cells (in yellow) in the basal band of the mesencephalon and in the LDT at stage 50 were not observed at stage 60. For abbreviations, see list. Arrows point to doble labeled cells. A magentahyphen;green version of this figure is provided as Supporting Information Figure 4. Scale bar = 50 μm in a,b,dhyphen;f,h, khyphen;p; 100 μm in c,g, i,j.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The present study represents a detailed spatiotemporal analysis of the localization of calbindin‐D28k (CB) and calretinin (CR) immunoreactive structures in the brain of
<i>Xenopus laevis</i>
throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in
<i>Xenopus</i>
, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. J. Comp. Neurol. 521:79–108, 2013. © 2012 Wiley Periodicals, Inc.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" copyright="Wiley Periodicals, Inc." href="urn:x-wiley:00219967:media:CNE23163:gra001"></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Calbindin and Calretinin in Xenopus Brain</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruth</namePart>
<namePart type="family">Morona</namePart>
<affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agustín</namePart>
<namePart type="family">González</namePart>
<affiliation>Department of Cell Biology, Faculty of Biology, University Complutense, 28040 Madrid, Spain</affiliation>
<affiliation>Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2013-01-01</dateIssued>
<dateCaptured encoding="w3cdtf">2012-03-05</dateCaptured>
<dateValid encoding="w3cdtf">2012-06-01</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">4</extent>
<extent unit="references">228</extent>
<extent unit="words">22067</extent>
</physicalDescription>
<abstract lang="en">The present study represents a detailed spatiotemporal analysis of the localization of calbindin‐D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. J. Comp. Neurol. 521:79–108, 2013. © 2012 Wiley Periodicals, Inc.</abstract>
<abstract type="graphical" lang="en"></abstract>
<note type="funding">Spanish Ministry of Science and Technology - No. BFU2009‐12315; No. BFU2012‐31687; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>calcium‐binding proteins</topic>
<topic>telencephalon</topic>
<topic>thalamus</topic>
<topic>brainstem</topic>
<topic>evolution</topic>
<topic>amphibians</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Comparative Neurology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Comp. Neurol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Additional Supporting Information may be found in the online version of this article.Supporting Info Item: Supporting Figure 1 (Magentahyphen;green version of Figure 2 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled CB/CR sagittal (a, dorsal is upwards and rostral to the left) and transverse (bhyphen;t) sections through representative levels of the brain of Xenopus at embryonic stages (indicated on each photomicrograph).The levels of transverse sections are indicated in Figure 1a and b. In all photographs green is CB and red is CR, whereas yellow represents double labeled cells. Dashed lines mark the approximate boundary between neuromeres and telencephalic subdivisions. Arrowheads in f point to the lateral CRir fiber tract in p2, in h and s point to the lateral CRir fiber tract in the basal plate, and in q to doble labeled cells in the LDT. The asterisks in r and t mark the CBir fibers in the lateral rhombencephalon. For abbreviations, see list. A magentahyphen;green version of this figure is provided as Supporting Information Figure 1. Scale bar = 50 μm in ahyphen;h; 100 μm in ihyphen;t. - Supporting Figure 2 (Magentahyphen;green version of Figure 3 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled CB/CR sagittal (a,k,l; dorsal is upwards and rostral to the left) and transverse (bhyphen;j) sections through representative levels of the brain of Xenopus at premetamorphic stages (indicated on each photomicrograph). The levels of transverse sections for stage 50, and the area shown in a, are indicated in Figure 1c. In all photographs green is CB and red is CR, whereas yellow represents double labeled cells. Dashed lines represent the approximate boundary between telencephalic (e,f) or diencephalic (a,b,h,k,l) subdivisions, the mesencephalic longitudinal bands (c,g,k) and rhombencephalic regions (d,i,j). For abbreviations, see list. A magentahyphen;green version of this figure is provided as Supporting Information Figure 2. Scale bar =100 μm in ahyphen;j,l; 200 μm in k. - Supporting Figure 3 (Magentahyphen;green version of Figure 4 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled CB/CR transverse (ahyphen;h) and sagittal (ihyphen;k; dorsal is upwards and rostral to the left) sections through representative levels of the brain of Xenopus at prometamorphic stages (indicated on each photomicrograph). The levels of transverse sections are indicated in Figure 1d. In all photographs green is CB and red is CR, whereas yellow represents double labeled cells. Dashed lines represent the approximate boundary between telencephalic (ahyphen;d, i), diencephalic (ehyphen;g, ihyphen;k), mesencephalic (g,h) and rhombencephalic (i) subdivisions. i: Low magnification image of a lateral sagittal section showing the relationship between CB and CR labeled structures throughout the brain of a prometamorphic larva. j,k: Details of sagittal sections through the hypothalamic (j) and pretectal (k) region showing the relative localization of CBhyphen; and CRhyphen;labeled structures in each subdivision.. Inset in panel g' shows trigeminal mesencephalic neurons (arrowheads) in the rostral optic tectum. For abbreviations, see list. A magentahyphen;green version of this figure is provided as Supporting Information Figure 3. Scale bar =100 μm in ahyphen;h,k; 200 μm in i,j. - Supporting Figure 4 (Magentahyphen;green version of Figure 5 for the assistance of colorhyphen;blind readers): Photomicrographs of doublehyphen;labeled sagittal (ahyphen;i; dorsal is upwards and rostral to the left) and horizontal (j; rostral is to the left) sections through the brain of Xenopus at different developmental stages showing the distribution of CB or CR immunoreactive cells with nitric oxide synthase (NOS), tyrosine hydroxylase (TH) or choline acelyltransferase (ChAT). The markers shown in each panel are indicated in aprópiate color code, and the developmental stage is indicated in the upper rigth corner. ahyphen;c: relative localization of nitrergic (a) catecholaminergic (b) and cholinergic (c) populations compared to CR at stage 45. d: Colocalization of CR in the large niterergic cells of the central amygdala (double labeled cells in yellow). e: Distribution of CR in relation to the catecholaminergic cells in the preoptic and suprachiasmatic regions. f: Segmental distribution of the alar CRir cell groups in relation to the basal catecholaminergic cell groups, g: CRir and NOSir cells in the distinct dorsal and lateral bands in the mesencephalon, and along the rhombencephalon. h: High magnification of double CR/NOS labeled cells in the inferior reticular nucleus. i: CBir cells in the alar region of r0 and r1 in relation to the cholinergic nuclei. Arrowhead points to the fibers of the troclear nucleus in the basal plate (not shown). j: Horizontal section showing the relative position and the segmental arrangement of CR groups in relation to the ChATir motor and nonhyphen;motor cholinergic groups in the rhombencephalon. khyphen;m: Relative localization CBir cells in relation to the oculomotor, isthmic, rhombencephalic and spinal cholinergic cell groups. Doublehyphen;labeled cells always appear in yellow. nhyphen;p: CB and NOShyphen;stained structures in a premetamorphic larva in the mesencephalon and rostral rhombencephalon (n) and in prometamorphic larvae in the caudal telencephalon (o) and mesencephalon and rostral rhombencephalon (p). Double labeled CB/NOSir cells (in yellow) in the basal band of the mesencephalon and in the LDT at stage 50 were not observed at stage 60. For abbreviations, see list. Arrows point to doble labeled cells. A magentahyphen;green version of this figure is provided as Supporting Information Figure 4. Scale bar = 50 μm in a,b,dhyphen;f,h, khyphen;p; 100 μm in c,g, i,j. - </note>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0021-9967</identifier>
<identifier type="eISSN">1096-9861</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9861</identifier>
<identifier type="PublisherID">CNE</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>521</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>79</start>
<end>108</end>
<total>31</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">7B7667BF488D857B02DC3C7A1631E8A10FA67B87</identifier>
<identifier type="DOI">10.1002/cne.23163</identifier>
<identifier type="ArticleID">CNE23163</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Eau/explor/EsturgeonV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001549 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001549 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Eau
   |area=    EsturgeonV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7B7667BF488D857B02DC3C7A1631E8A10FA67B87
   |texte=   Pattern of calbindin‐D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Sat Mar 25 15:37:54 2017. Site generation: Tue Feb 13 14:18:49 2024