Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.

Identifieur interne : 001314 ( Main/Exploration ); précédent : 001313; suivant : 001315

Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.

Auteurs : Tyson A. Clark [États-Unis] ; Xingyu Lu ; Khai Luong ; Qing Dai ; Matthew Boitano ; Stephen W. Turner ; Chuan He ; Jonas Korlach

Source :

RBID : pubmed:23339471

Descripteurs français

English descriptors

Abstract

BACKGROUND

DNA methylation serves as an important epigenetic mark in both eukaryotic and prokaryotic organisms. In eukaryotes, the most common epigenetic mark is 5-methylcytosine, whereas prokaryotes can have 6-methyladenine, 4-methylcytosine, or 5-methylcytosine. Single-molecule, real-time sequencing is capable of directly detecting all three types of modified bases. However, the kinetic signature of 5-methylcytosine is subtle, which presents a challenge for detection. We investigated whether conversion of 5-methylcytosine to 5-carboxylcytosine using the enzyme Tet1 would enhance the kinetic signature, thereby improving detection.

RESULTS

We characterized the kinetic signatures of various cytosine modifications, demonstrating that 5-carboxylcytosine has a larger impact on the local polymerase rate than 5-methylcytosine. Using Tet1-mediated conversion, we show improved detection of 5-methylcytosine using in vitro methylated templates and apply the method to the characterization of 5-methylcytosine sites in the genomes of Escherichia coli MG1655 and Bacillus halodurans C-125.

CONCLUSIONS

We have developed a method for the enhancement of directly detecting 5-methylcytosine during single-molecule, real-time sequencing. Using Tet1 to convert 5-methylcytosine to 5-carboxylcytosine improves the detection rate of this important epigenetic marker, thereby complementing the set of readily detectable microbial base modifications, and enhancing the ability to interrogate eukaryotic epigenetic markers.


DOI: 10.1186/1741-7007-11-4
PubMed: 23339471
PubMed Central: PMC3598637


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.</title>
<author>
<name sortKey="Clark, Tyson A" sort="Clark, Tyson A" uniqKey="Clark T" first="Tyson A" last="Clark">Tyson A. Clark</name>
<affiliation wicri:level="2">
<nlm:affiliation>Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xingyu" sort="Lu, Xingyu" uniqKey="Lu X" first="Xingyu" last="Lu">Xingyu Lu</name>
</author>
<author>
<name sortKey="Luong, Khai" sort="Luong, Khai" uniqKey="Luong K" first="Khai" last="Luong">Khai Luong</name>
</author>
<author>
<name sortKey="Dai, Qing" sort="Dai, Qing" uniqKey="Dai Q" first="Qing" last="Dai">Qing Dai</name>
</author>
<author>
<name sortKey="Boitano, Matthew" sort="Boitano, Matthew" uniqKey="Boitano M" first="Matthew" last="Boitano">Matthew Boitano</name>
</author>
<author>
<name sortKey="Turner, Stephen W" sort="Turner, Stephen W" uniqKey="Turner S" first="Stephen W" last="Turner">Stephen W. Turner</name>
</author>
<author>
<name sortKey="He, Chuan" sort="He, Chuan" uniqKey="He C" first="Chuan" last="He">Chuan He</name>
</author>
<author>
<name sortKey="Korlach, Jonas" sort="Korlach, Jonas" uniqKey="Korlach J" first="Jonas" last="Korlach">Jonas Korlach</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23339471</idno>
<idno type="pmid">23339471</idno>
<idno type="doi">10.1186/1741-7007-11-4</idno>
<idno type="pmc">PMC3598637</idno>
<idno type="wicri:Area/Main/Corpus">001329</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001329</idno>
<idno type="wicri:Area/Main/Curation">001329</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001329</idno>
<idno type="wicri:Area/Main/Exploration">001329</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.</title>
<author>
<name sortKey="Clark, Tyson A" sort="Clark, Tyson A" uniqKey="Clark T" first="Tyson A" last="Clark">Tyson A. Clark</name>
<affiliation wicri:level="2">
<nlm:affiliation>Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Xingyu" sort="Lu, Xingyu" uniqKey="Lu X" first="Xingyu" last="Lu">Xingyu Lu</name>
</author>
<author>
<name sortKey="Luong, Khai" sort="Luong, Khai" uniqKey="Luong K" first="Khai" last="Luong">Khai Luong</name>
</author>
<author>
<name sortKey="Dai, Qing" sort="Dai, Qing" uniqKey="Dai Q" first="Qing" last="Dai">Qing Dai</name>
</author>
<author>
<name sortKey="Boitano, Matthew" sort="Boitano, Matthew" uniqKey="Boitano M" first="Matthew" last="Boitano">Matthew Boitano</name>
</author>
<author>
<name sortKey="Turner, Stephen W" sort="Turner, Stephen W" uniqKey="Turner S" first="Stephen W" last="Turner">Stephen W. Turner</name>
</author>
<author>
<name sortKey="He, Chuan" sort="He, Chuan" uniqKey="He C" first="Chuan" last="He">Chuan He</name>
</author>
<author>
<name sortKey="Korlach, Jonas" sort="Korlach, Jonas" uniqKey="Korlach J" first="Jonas" last="Korlach">Jonas Korlach</name>
</author>
</analytic>
<series>
<title level="j">BMC biology</title>
<idno type="eISSN">1741-7007</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>5-Methylcytosine (metabolism)</term>
<term>DNA Modification Methylases (metabolism)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Escherichia coli (enzymology)</term>
<term>Genome, Bacterial (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Mixed Function Oxygenases (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Proto-Oncogene Proteins (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>5-Méthyl-cytosine (métabolisme)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>DNA modification methylases (métabolisme)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Génome bactérien (MeSH)</term>
<term>Mixed function oxygenases (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines proto-oncogènes (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>5-Methylcytosine</term>
<term>DNA Modification Methylases</term>
<term>DNA-Binding Proteins</term>
<term>Proto-Oncogene Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>5-Méthyl-cytosine</term>
<term>DNA modification methylases</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines proto-oncogènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Bacterial</term>
<term>Kinetics</term>
<term>Mixed Function Oxygenases</term>
<term>Oxidation-Reduction</term>
<term>Sequence Analysis, DNA</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Cinétique</term>
<term>Génome bactérien</term>
<term>Mixed function oxygenases</term>
<term>Oxydoréduction</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>DNA methylation serves as an important epigenetic mark in both eukaryotic and prokaryotic organisms. In eukaryotes, the most common epigenetic mark is 5-methylcytosine, whereas prokaryotes can have 6-methyladenine, 4-methylcytosine, or 5-methylcytosine. Single-molecule, real-time sequencing is capable of directly detecting all three types of modified bases. However, the kinetic signature of 5-methylcytosine is subtle, which presents a challenge for detection. We investigated whether conversion of 5-methylcytosine to 5-carboxylcytosine using the enzyme Tet1 would enhance the kinetic signature, thereby improving detection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We characterized the kinetic signatures of various cytosine modifications, demonstrating that 5-carboxylcytosine has a larger impact on the local polymerase rate than 5-methylcytosine. Using Tet1-mediated conversion, we show improved detection of 5-methylcytosine using in vitro methylated templates and apply the method to the characterization of 5-methylcytosine sites in the genomes of Escherichia coli MG1655 and Bacillus halodurans C-125.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>We have developed a method for the enhancement of directly detecting 5-methylcytosine during single-molecule, real-time sequencing. Using Tet1 to convert 5-methylcytosine to 5-carboxylcytosine improves the detection rate of this important epigenetic marker, thereby complementing the set of readily detectable microbial base modifications, and enhancing the ability to interrogate eukaryotic epigenetic markers.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23339471</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1741-7007</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>BMC biology</Title>
<ISOAbbreviation>BMC Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.</ArticleTitle>
<Pagination>
<MedlinePgn>4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1741-7007-11-4</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">DNA methylation serves as an important epigenetic mark in both eukaryotic and prokaryotic organisms. In eukaryotes, the most common epigenetic mark is 5-methylcytosine, whereas prokaryotes can have 6-methyladenine, 4-methylcytosine, or 5-methylcytosine. Single-molecule, real-time sequencing is capable of directly detecting all three types of modified bases. However, the kinetic signature of 5-methylcytosine is subtle, which presents a challenge for detection. We investigated whether conversion of 5-methylcytosine to 5-carboxylcytosine using the enzyme Tet1 would enhance the kinetic signature, thereby improving detection.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We characterized the kinetic signatures of various cytosine modifications, demonstrating that 5-carboxylcytosine has a larger impact on the local polymerase rate than 5-methylcytosine. Using Tet1-mediated conversion, we show improved detection of 5-methylcytosine using in vitro methylated templates and apply the method to the characterization of 5-methylcytosine sites in the genomes of Escherichia coli MG1655 and Bacillus halodurans C-125.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We have developed a method for the enhancement of directly detecting 5-methylcytosine during single-molecule, real-time sequencing. Using Tet1 to convert 5-methylcytosine to 5-carboxylcytosine improves the detection rate of this important epigenetic marker, thereby complementing the set of readily detectable microbial base modifications, and enhancing the ability to interrogate eukaryotic epigenetic markers.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Clark</LastName>
<ForeName>Tyson A</ForeName>
<Initials>TA</Initials>
<AffiliationInfo>
<Affiliation>Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Xingyu</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luong</LastName>
<ForeName>Khai</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dai</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boitano</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Turner</LastName>
<ForeName>Stephen W</ForeName>
<Initials>SW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Chuan</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Korlach</LastName>
<ForeName>Jonas</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K01 HG006699</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Biol</MedlineTA>
<NlmUniqueID>101190720</NlmUniqueID>
<ISSNLinking>1741-7007</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011518">Proto-Oncogene Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6R795CQT4H</RegistryNumber>
<NameOfSubstance UI="D044503">5-Methylcytosine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D006899">Mixed Function Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C462539">TET1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D015254">DNA Modification Methylases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044503" MajorTopicYN="N">5-Methylcytosine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015254" MajorTopicYN="N">DNA Modification Methylases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="N">Genome, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006899" MajorTopicYN="N">Mixed Function Oxygenases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011518" MajorTopicYN="N">Proto-Oncogene Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="Y">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23339471</ArticleId>
<ArticleId IdType="pii">1741-7007-11-4</ArticleId>
<ArticleId IdType="doi">10.1186/1741-7007-11-4</ArticleId>
<ArticleId IdType="pmc">PMC3598637</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2012 Jul;30(7):693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Sep 2;333(6047):1303-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21817016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Jul;30(7):701-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22750883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2012 Apr;8(4):328-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22327402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Dec 1;25(23):2436-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2011 Jul 25;50(31):7008-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21721093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Jun 8;149(6):1368-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22608086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jun 15;27(12):1696-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Feb;40(4):e29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22156058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Nov 19;16(4):609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Dec;40(22):11450-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23034806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jan 1;16(1):6-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 2;323(5910):133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19023044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Dec;69(12):7197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Sep 2;333(6047):1300-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21778364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 May 18;336(6083):934-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22539555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1991;25:585-627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1812816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2011 Jul 11;50(29):6460-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21688365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(1):e8888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20126651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D234-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19846593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Jun;7(6):461-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20453866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 15;324(5929):929-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jan;9(1):75-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Dec;30(12):1232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23138224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Aug;38(15):e159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20571086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Integr. 2011 Dec 20;2:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22185597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Jan;23(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23093720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2010;472:431-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20580975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2009 May;33(3):488-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19175412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 15;324(5929):930-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Boitano, Matthew" sort="Boitano, Matthew" uniqKey="Boitano M" first="Matthew" last="Boitano">Matthew Boitano</name>
<name sortKey="Dai, Qing" sort="Dai, Qing" uniqKey="Dai Q" first="Qing" last="Dai">Qing Dai</name>
<name sortKey="He, Chuan" sort="He, Chuan" uniqKey="He C" first="Chuan" last="He">Chuan He</name>
<name sortKey="Korlach, Jonas" sort="Korlach, Jonas" uniqKey="Korlach J" first="Jonas" last="Korlach">Jonas Korlach</name>
<name sortKey="Lu, Xingyu" sort="Lu, Xingyu" uniqKey="Lu X" first="Xingyu" last="Lu">Xingyu Lu</name>
<name sortKey="Luong, Khai" sort="Luong, Khai" uniqKey="Luong K" first="Khai" last="Luong">Khai Luong</name>
<name sortKey="Turner, Stephen W" sort="Turner, Stephen W" uniqKey="Turner S" first="Stephen W" last="Turner">Stephen W. Turner</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Clark, Tyson A" sort="Clark, Tyson A" uniqKey="Clark T" first="Tyson A" last="Clark">Tyson A. Clark</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001314 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001314 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23339471
   |texte=   Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23339471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020