Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.

Identifieur interne : 001313 ( Main/Exploration ); précédent : 001312; suivant : 001314

Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.

Auteurs : Michelle J. Serapiglia [États-Unis] ; Michele C. Humiston ; Haowen Xu ; David A. Hogsett ; Ram N M. De Ordu A ; Arthur J. Stipanovic ; Lawrence B. Smart

Source :

RBID : pubmed:23532212

Abstract

In the conversion of woody biomass feedstocks into liquid fuel ethanol, the pretreatment process is the most critical and costly step. Variations in biomass composition based on genetic differences or environmental effects have a significant impact on the degree of accessibility accomplished by pretreatment and subsequent sugar release by enzymatic hydrolysis. To evaluate this, biomass from 10 genetically diverse, genotypes of shrub willow (Salix spp.) was pretreated with a hot-water process at two levels of severity, hydrolyzed using a combination of two commercial enzyme cocktails, and the release of hexose and pentose monomers was quantified by high-performance liquid chromatography. Among the genotypes selected for analysis, cellulose content ranged from 39 to 45% (w/w) and lignin content ranged from 20 to 23% (w/w) at harvest. Differences in the effectiveness of the pretreatment process were observed among the various willow genotypes. Correlations were identified between total sugar release and % cellulose and % lignin content. There was a significant effect of pretreatment severity on polysaccharide accessibility, but the response to pretreatments was different among the genotypes. At the high severity pretreatment 'SV1' was the least recalcitrant with sugar release representing as much as 60% of total biomass. These results suggest that structural, as well as chemical characteristics of the biomass may influence pretreatment and hydrolytic efficiency.

DOI: 10.3389/fpls.2013.00057
PubMed: 23532212
PubMed Central: PMC3607077


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.</title>
<author>
<name sortKey="Serapiglia, Michelle J" sort="Serapiglia, Michelle J" uniqKey="Serapiglia M" first="Michelle J" last="Serapiglia">Michelle J. Serapiglia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, New York State Agricultural Experiment Station, Cornell University Geneva, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, New York State Agricultural Experiment Station, Cornell University Geneva, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Humiston, Michele C" sort="Humiston, Michele C" uniqKey="Humiston M" first="Michele C" last="Humiston">Michele C. Humiston</name>
</author>
<author>
<name sortKey="Xu, Haowen" sort="Xu, Haowen" uniqKey="Xu H" first="Haowen" last="Xu">Haowen Xu</name>
</author>
<author>
<name sortKey="Hogsett, David A" sort="Hogsett, David A" uniqKey="Hogsett D" first="David A" last="Hogsett">David A. Hogsett</name>
</author>
<author>
<name sortKey="De Ordu A, Ram N M" sort="De Ordu A, Ram N M" uniqKey="De Ordu A R" first="Ram N M" last="De Ordu A">Ram N M. De Ordu A</name>
</author>
<author>
<name sortKey="Stipanovic, Arthur J" sort="Stipanovic, Arthur J" uniqKey="Stipanovic A" first="Arthur J" last="Stipanovic">Arthur J. Stipanovic</name>
</author>
<author>
<name sortKey="Smart, Lawrence B" sort="Smart, Lawrence B" uniqKey="Smart L" first="Lawrence B" last="Smart">Lawrence B. Smart</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23532212</idno>
<idno type="pmid">23532212</idno>
<idno type="doi">10.3389/fpls.2013.00057</idno>
<idno type="pmc">PMC3607077</idno>
<idno type="wicri:Area/Main/Corpus">001300</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001300</idno>
<idno type="wicri:Area/Main/Curation">001300</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001300</idno>
<idno type="wicri:Area/Main/Exploration">001300</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.</title>
<author>
<name sortKey="Serapiglia, Michelle J" sort="Serapiglia, Michelle J" uniqKey="Serapiglia M" first="Michelle J" last="Serapiglia">Michelle J. Serapiglia</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture, New York State Agricultural Experiment Station, Cornell University Geneva, NY, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture, New York State Agricultural Experiment Station, Cornell University Geneva, NY</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Humiston, Michele C" sort="Humiston, Michele C" uniqKey="Humiston M" first="Michele C" last="Humiston">Michele C. Humiston</name>
</author>
<author>
<name sortKey="Xu, Haowen" sort="Xu, Haowen" uniqKey="Xu H" first="Haowen" last="Xu">Haowen Xu</name>
</author>
<author>
<name sortKey="Hogsett, David A" sort="Hogsett, David A" uniqKey="Hogsett D" first="David A" last="Hogsett">David A. Hogsett</name>
</author>
<author>
<name sortKey="De Ordu A, Ram N M" sort="De Ordu A, Ram N M" uniqKey="De Ordu A R" first="Ram N M" last="De Ordu A">Ram N M. De Ordu A</name>
</author>
<author>
<name sortKey="Stipanovic, Arthur J" sort="Stipanovic, Arthur J" uniqKey="Stipanovic A" first="Arthur J" last="Stipanovic">Arthur J. Stipanovic</name>
</author>
<author>
<name sortKey="Smart, Lawrence B" sort="Smart, Lawrence B" uniqKey="Smart L" first="Lawrence B" last="Smart">Lawrence B. Smart</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the conversion of woody biomass feedstocks into liquid fuel ethanol, the pretreatment process is the most critical and costly step. Variations in biomass composition based on genetic differences or environmental effects have a significant impact on the degree of accessibility accomplished by pretreatment and subsequent sugar release by enzymatic hydrolysis. To evaluate this, biomass from 10 genetically diverse, genotypes of shrub willow (Salix spp.) was pretreated with a hot-water process at two levels of severity, hydrolyzed using a combination of two commercial enzyme cocktails, and the release of hexose and pentose monomers was quantified by high-performance liquid chromatography. Among the genotypes selected for analysis, cellulose content ranged from 39 to 45% (w/w) and lignin content ranged from 20 to 23% (w/w) at harvest. Differences in the effectiveness of the pretreatment process were observed among the various willow genotypes. Correlations were identified between total sugar release and % cellulose and % lignin content. There was a significant effect of pretreatment severity on polysaccharide accessibility, but the response to pretreatments was different among the genotypes. At the high severity pretreatment 'SV1' was the least recalcitrant with sugar release representing as much as 60% of total biomass. These results suggest that structural, as well as chemical characteristics of the biomass may influence pretreatment and hydrolytic efficiency.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">23532212</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.</ArticleTitle>
<Pagination>
<MedlinePgn>57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2013.00057</ELocationID>
<Abstract>
<AbstractText>In the conversion of woody biomass feedstocks into liquid fuel ethanol, the pretreatment process is the most critical and costly step. Variations in biomass composition based on genetic differences or environmental effects have a significant impact on the degree of accessibility accomplished by pretreatment and subsequent sugar release by enzymatic hydrolysis. To evaluate this, biomass from 10 genetically diverse, genotypes of shrub willow (Salix spp.) was pretreated with a hot-water process at two levels of severity, hydrolyzed using a combination of two commercial enzyme cocktails, and the release of hexose and pentose monomers was quantified by high-performance liquid chromatography. Among the genotypes selected for analysis, cellulose content ranged from 39 to 45% (w/w) and lignin content ranged from 20 to 23% (w/w) at harvest. Differences in the effectiveness of the pretreatment process were observed among the various willow genotypes. Correlations were identified between total sugar release and % cellulose and % lignin content. There was a significant effect of pretreatment severity on polysaccharide accessibility, but the response to pretreatments was different among the genotypes. At the high severity pretreatment 'SV1' was the least recalcitrant with sugar release representing as much as 60% of total biomass. These results suggest that structural, as well as chemical characteristics of the biomass may influence pretreatment and hydrolytic efficiency.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Serapiglia</LastName>
<ForeName>Michelle J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture, New York State Agricultural Experiment Station, Cornell University Geneva, NY, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Humiston</LastName>
<ForeName>Michele C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Haowen</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hogsett</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Orduña</LastName>
<ForeName>Ramón M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stipanovic</LastName>
<ForeName>Arthur J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smart</LastName>
<ForeName>Lawrence B</ForeName>
<Initials>LB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Salix</Keyword>
<Keyword MajorTopicYN="N">bioenergy</Keyword>
<Keyword MajorTopicYN="N">biomass</Keyword>
<Keyword MajorTopicYN="N">ethanol</Keyword>
<Keyword MajorTopicYN="N">hydrolysis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23532212</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2013.00057</ArticleId>
<ArticleId IdType="pmc">PMC3607077</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2011 Feb;38(2):355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20652357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):91-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22239166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6300-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2011 Feb;53(2):151-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Sep;10(7):883-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2001 Spring;91-93:23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11963852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Aug;96(8):1388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2002 Aug;59(4-5):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="De Ordu A, Ram N M" sort="De Ordu A, Ram N M" uniqKey="De Ordu A R" first="Ram N M" last="De Ordu A">Ram N M. De Ordu A</name>
<name sortKey="Hogsett, David A" sort="Hogsett, David A" uniqKey="Hogsett D" first="David A" last="Hogsett">David A. Hogsett</name>
<name sortKey="Humiston, Michele C" sort="Humiston, Michele C" uniqKey="Humiston M" first="Michele C" last="Humiston">Michele C. Humiston</name>
<name sortKey="Smart, Lawrence B" sort="Smart, Lawrence B" uniqKey="Smart L" first="Lawrence B" last="Smart">Lawrence B. Smart</name>
<name sortKey="Stipanovic, Arthur J" sort="Stipanovic, Arthur J" uniqKey="Stipanovic A" first="Arthur J" last="Stipanovic">Arthur J. Stipanovic</name>
<name sortKey="Xu, Haowen" sort="Xu, Haowen" uniqKey="Xu H" first="Haowen" last="Xu">Haowen Xu</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Serapiglia, Michelle J" sort="Serapiglia, Michelle J" uniqKey="Serapiglia M" first="Michelle J" last="Serapiglia">Michelle J. Serapiglia</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001313 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001313 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23532212
   |texte=   Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23532212" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020